Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A = \(\frac{1}{2}.\frac{3}{4}.\frac{4}{5}...\frac{99}{100}\)
\(A=\frac{1}{2}.\left(\frac{3.4....99}{4.5...100}\right)\)
\(A=\frac{1}{2}.\left(\frac{3}{100}\right)\)\(\)\(A=\frac{3}{200}\)
\(B=\frac{2}{3}.\frac{4}{5}.\frac{5}{6}...\frac{100}{101}\)
\(B=\frac{2}{3}.\left(\frac{4.5...100}{5.6...101}\right)\)
\(B=\frac{2}{3}.\left(\frac{4}{101}\right)\)
\(B=\frac{8}{303}\)
\(A.B=\frac{8}{303}.\frac{3}{200}\)
\(A.B=\frac{1}{2525}\)
b, A = 1/2 x 3/100
B = 2/3 x 4/101
Ta có : 1 - 2/3 = 1/3; 1 - 1/2 = 1/2
MÀ 1/3 < 1/2 => 2/3 > 1/2 (1)
Ta có : 1 - 3/100 = 97/100
1 - 4/101 = 97/101
Mà 97/101 < 97/100 => 4/101 > 3/100 (2)
Từ (1) và (2) => B > A
a,
\(AB=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(AB=\frac{\left[1\cdot3\cdot5\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
b,
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> \(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}< \frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\Leftrightarrow A< B\)
a)
\(A=\left(\frac{19}{24}-\frac{7}{24}\right)-\left(\frac{1}{2}+\frac{1}{3}\right)\)
\(A=\frac{1}{2}-\frac{1}{2}+\frac{1}{3}\)
\(A=\frac{1}{3}\)
\(B=\left(\frac{7}{12}-\frac{5}{12}\right)+\left(\frac{5}{6}+\frac{1}{4}-\frac{3}{7}\right)\)
\(B=\left(\frac{1}{6}+\frac{5}{6}\right)+\frac{1}{4}-\frac{3}{7}\)
\(B=\frac{5}{4}-\frac{3}{7}\)
\(B=\frac{23}{28}\)
b)
\(x=A-B\)
\(x=\frac{1}{3}-\frac{23}{28}\)
\(x=\frac{-41}{84}\)
Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1
c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1
=> A = 1+bc+b/bc+b+1 = 1
Tk mk nha
BÀI 1:
\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)
\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\) (thay abc = 1)
\(=\frac{a+ab+1}{a+ab+1}=1\)
1)Ta có:\(\frac{3x-y}{x+y}=\frac{3}{4}\Rightarrow\left(3x-y\right)4=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Rightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
\(\Rightarrow\frac{x}{y4}=\frac{7}{36}\)
Thay x = 3 vào \(\frac{a-x}{3}=\frac{bx-5}{5}\)
\(\Rightarrow\frac{a-3}{3}=\frac{3b-5}{5}\)\(\Rightarrow\frac{a}{3}-1=\frac{3b}{5}-1\)\(\Rightarrow\frac{a}{3}=\frac{3b}{5}\)\(\Rightarrow a=\frac{3.3b}{5}=\frac{9b}{5}\)
Thay a = 9b/5 vào \(\frac{a}{b}-\frac{b}{a}\)\(\Rightarrow\frac{\frac{9b}{5}}{b}-\frac{b}{\frac{9b}{5}}=\frac{\left(\frac{9b}{5}\right)^2-b^2}{\frac{9b}{5}.b}=\frac{\frac{81b^2}{25}-b^2}{\frac{9b^2}{5}}=b^2\left(\frac{81}{25}-1\right)\div\frac{9b^2}{5}=\frac{56b^2}{25}.\frac{5}{9b^2}=\frac{56}{45}\)
Vậy....
\(\frac{a-b}{b}=\frac{3}{5}\Leftrightarrow\frac{a-b}{3}=\frac{b}{5}=\frac{a-b+b}{3+5}=\frac{a}{8}\left(\text{tính chất dãy tỉ số bằng nhau}\right)\Leftrightarrow\frac{b}{5}=\frac{a}{8}\Leftrightarrow\frac{a}{b}=\frac{8}{5}\)
Ta có: \(\frac{a-b}{b}=\frac{a}{b}-1=\frac{3}{5}\)
\(\Rightarrow\frac{a}{b}=\frac{3}{5}+1=\frac{8}{5}\)
Vậy \(\frac{a}{b}=\frac{8}{5}\)