Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\frac{6}{11}x=\frac{6x}{11}=\frac{18x}{33}\)
\(\frac{9}{2}y=\frac{9y}{2}=\frac{18y}{4}\)
Mà: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) => \(\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}\)
Theo đề bài, ta có: y - x + z = -196
=> Áp dụng tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{18y}{4}=\frac{18x}{33}=\frac{18z}{5}=\frac{18y-18x+18z}{4-33+5}=\frac{18\left(y-x+z\right)}{-24}=\frac{-18.196}{-24}=\frac{3528}{24}=147\)
=>\(\left\{{}\begin{matrix}\frac{6}{11}x=147\Leftrightarrow x=147.\frac{11}{6}=\frac{539}{2}\\\frac{9}{2}y=147\Leftrightarrow y=147.\frac{2}{9}=\frac{98}{3}\\\frac{18}{5}z=147\Leftrightarrow z=147.\frac{5}{18}=\frac{245}{6}\end{matrix}\right.\) (TMĐK)
Vậy: \(x=\frac{539}{2};y=\frac{98}{3};z=\frac{245}{6}\)
Chúc bạn học tốt!Tick cho mình nhé!
\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+z}{-\frac{11}{6}+\frac{5}{18}}=-\frac{196}{-\frac{14}{9}}=126\)
x=\(126.\frac{11}{6}=231\)
y=\(126.\frac{2}{9}=28\)
z=\(126.\frac{5}{18}=35\)
b) \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{96}{19}\)hoặc \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=-\frac{96}{19}\)
=> ...........
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{-\frac{11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{-\frac{4}{3}}=90\)
\(\frac{x}{\frac{11}{6}}=90\Rightarrow x=90\times\frac{11}{6}=165\)
\(\frac{y}{\frac{2}{9}}=90\Rightarrow y=90\times\frac{2}{9}=20\)
\(\frac{z}{\frac{5}{18}}=90\Rightarrow x=90\times\frac{5}{18}=25\)
Giải:
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{x}{\frac{11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\Rightarrow\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{-x}{\frac{-11}{6}}=\frac{y}{\frac{2}{9}}=\frac{z}{\frac{5}{18}}=\frac{-x+y+z}{\frac{-11}{6}+\frac{2}{9}+\frac{5}{18}}=\frac{-120}{\frac{-4}{3}}=90\)
+) \(\frac{x}{\frac{11}{6}}=90\Rightarrow x=165\)
+) \(\frac{y}{\frac{2}{9}}=90\Rightarrow y=20\)
+) \(\frac{z}{\frac{5}{18}}=20\Rightarrow z=25\)
Vậy bộ số \(\left(x,y,z\right)\) là: \(\left(165,20,25\right)\)
Tự nhiên máy mk bị restart nên mk gửi trả lời hơi chậm nhé!
a, \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
=> x=8,y=6,z=18
b, \(\hept{\begin{cases}\frac{x}{y}=\frac{9}{7}\Rightarrow\frac{x}{9}=\frac{y}{7}\\\frac{y}{z}=\frac{7}{3}\Rightarrow\frac{y}{7}=\frac{z}{3}\end{cases}\Rightarrow\frac{x}{9}=\frac{y}{7}=\frac{z}{3}=\frac{x-y+z}{9-7+3}=\frac{-15}{5}=-3}\)
=> x=-27,y=-21,z=-9
c, \(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\Rightarrow\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=> x=165,y=20,z=25
Câu thứ 2:
Đặt x/12 = y/9 = z/5 =k.
=> x= 12k
y= 9k
z=5k
=> xyz = 12k * 9k * 5k = 20
=> 540 * k^3 = 20
k^3 = 1/27
k= 1/3
=> x= 12k = 12* 1/3 = 4
y= 9k = 9 * 1/3 = 3
z= 5k = 5* 1/3 = 5/3
Vậy x=
y=
z=
Ta có: \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)
\(\Leftrightarrow\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)
\(\Leftrightarrow\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}\)
mà z-x=-196
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{18x}{33}=\frac{18y}{4}=\frac{18z}{5}=\frac{18z-18x}{5-33}=\frac{18\left(z-x\right)}{-28}=\frac{-18\cdot196}{-28}=126\)
Do đó:
\(\left\{{}\begin{matrix}\frac{6x}{11}=126\\\frac{9}{2}y=126\\\frac{18z}{5}=126\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=1386\\y=28\\18z=630\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=231\\y=28\\z=35\end{matrix}\right.\)
Vậy: (x,y,z)=(231;28;35)