Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=7(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{61}-\frac{1}{63}) \)
\(S=7(\frac{1}{3}-\frac{1}{63})\)
\(S=7(\frac{21}{63}-\frac{1}{63}) \)
\(S=7.\frac{20}{63}\)
\(S=\frac{20}{9}\)
Do đó:\(S<\frac{5}{2}\)
S=\(\frac{2.7}{3.5}+\frac{2.7}{5.7}+\frac{2.7}{7.9}+....+\frac{2.7}{61.63}\)và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.(\(\frac{1}{3}-\frac{1}{63}\)) và\(\frac{5}{2}\)
S=7.\(\frac{20}{63}\)và\(\frac{5}{2}\)
=>S=\(\frac{20}{9}\)so với \(\frac{5}{2}\)
=>S=\(\frac{40}{18}\)và\(\frac{45}{18}\)
=>S<\(\frac{5}{2}\)
M=1/2{1/3-1/5+1/5-1/7+1/7-1/9+...+1/97-1/99}
=1/2{1/3-1/99}
=1/2*32/99
=16/99
B=3/2 xin loi nhavì cách trình bày trên này khó quá, đọc chắc bạn ko hiểu đâu
M= \(\frac{\frac{3}{5}+\frac{3}{7}-\frac{3}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{11}}\)
=\(\frac{3.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}{4.\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{11}\right)}\)
=\(\frac{3}{4}\)
a: \(=\dfrac{37}{25}\cdot\dfrac{25}{74}\cdot\dfrac{4}{5}=\dfrac{1}{2}\cdot\dfrac{4}{5}=\dfrac{2}{5}\)
b: \(=\dfrac{6}{11}\cdot\dfrac{11}{5}:\dfrac{16}{9}=\dfrac{6}{5}\cdot\dfrac{9}{16}=\dfrac{54}{80}=\dfrac{27}{40}\)
A =\(\frac{2\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}{3\left(1-\frac{1}{19}+\frac{1}{43}-\frac{1}{1943}\right)}:\frac{4\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}{5\left(1-\frac{1}{29}+\frac{1}{41}-\frac{1}{2941}\right)}\)
=\(\frac{2}{3}:\frac{4}{5}=\frac{2}{3}.\frac{5}{4}=\frac{10}{12}=\frac{5}{6}\)
a)Đặt A= \(\frac{1}{2}\) - \(\frac{1}{4}\) + \(\frac{1}{8}\) - \(\frac{1}{16}\) + \(\frac{1}{32}\) - \(\frac{1}{64}\) => A=\(\frac{1}{2^1}\) - \(\frac{1}{2^2}\) + \(\frac{1}{2^3}\) - \(\frac{1}{2^4}\) + \(\frac{1}{2^5}\) - \(\frac{1}{2^6}\)
=> 2A= 1-\(\frac{1}{2^1}\) + \(\frac{1}{2^2}\) - \(\frac{1}{2^3}\) + \(\frac{1}{2^4}\) - \(\frac{1}{2^5}\)
=> 3A= 1- \(\frac{1}{2^6}\) <1 => A<\(\frac{1}{3}\) => đpcm.
b) Đặt B=\(\frac{1}{3}\) - \(\frac{2}{3^2}\) + \(\frac{3}{3^3}\) - \(\frac{4}{3^4}\) +..+ \(\frac{99}{3^{99}}\) - \(\frac{100}{3^{100}}\)
=> 3B=1-\(\frac{2}{3}\) + \(\frac{3}{3^2}\) - \(\frac{4}{3^3}\) +...+\(\frac{99}{3^{98}}\) - \(\frac{100}{3^{99}}\)
=> 4B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) - \(\frac{100}{3^{99}}\) < 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\) (1)
Đặt B= 1-\(\frac{1}{3}\) + \(\frac{1}{3^2}\) - \(\frac{1}{3^3}\) +...+\(\frac{1}{3^{99}}\)
=> 3B= 3-1+\(\frac{1}{3}\) - \(\frac{1}{3^2}\) + \(\frac{1}{3^3}\) - \(\frac{1}{3^4}\) +...+ \(\frac{1}{3^{98}}\)
=> 4B= 3-\(\frac{1}{3^{99}}\) <3 => B<\(\frac{3}{4}\) (2)
=> 4A<B<\(\frac{3}{4}\) => A<\(\frac{3}{16}\) => đpcm.
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
Ta có :
\(\frac{4}{5.7}+\frac{4}{7.9}+\frac{4}{9.11}+...+\frac{4}{53.55}\)
\(=\frac{4}{2}\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{53.55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{55}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{55}\right)=2.\left(\frac{11}{55}-\frac{1}{55}\right)=2.\frac{10}{55}=2.\frac{2}{11}=\frac{4}{11}\)
Có gì không hiểu bạn hỏi lại mình nhé! Chúc bạn học tốt!
Ta có: \(\frac{4}{5.7}+\frac{4}{7.9}+.....+\frac{4}{53.55}\)
Đặt C = \(\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{53.55}\)
\(\frac{1}{2}C=\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+....+\left(\frac{1}{53}-\frac{1}{55}\right)\)
\(\frac{1}{2}C=\frac{1}{5}-\frac{1}{55}\)
\(\frac{1}{2}C=\frac{2}{11}\)
\(C=\frac{2}{11}:\frac{1}{2}\)
Vậy C = \(\frac{4}{11}\)
Có gì sai thì mong bạn thông cảm