\(\frac{4^2}{1.5}+\frac{4^2}{5,9}+\frac{4^2}{9.13}+...+\frac{4^2}{45.49}\)
 Tính nha...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2018

Ta có : 

\(\frac{4^2}{1.5}+\frac{4^2}{5.9}+\frac{4^2}{9.13}+...+\frac{4^2}{45.49}\)

\(=\)\(4\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{45.49}\right)\)

\(=\)\(4\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{45}-\frac{1}{49}\right)\)

\(=\)\(4\left(1-\frac{1}{49}\right)\)

\(=\)\(4.\frac{48}{49}\)

\(=\)\(\frac{192}{49}\)

Chúc bạn học tốt ~

14 tháng 3 2018

\(\frac{4^2}{1\cdot5}+\frac{4^2}{5\cdot9}+\frac{4^2}{9\cdot13}+...+\frac{4^2}{45\cdot49}\)

\(=4\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+...+\frac{4}{45\cdot49}\right)\)

\(=4\left(\frac{5-1}{1\cdot5}+\frac{9-5}{5\cdot9}+\frac{13-9}{9\cdot13}+...+\frac{49-45}{45\cdot49}\right)\)

\(=4\left(\frac{5}{1\cdot5}-\frac{1}{1\cdot5}+\frac{9}{5\cdot9}-\frac{5}{5\cdot9}+...+\frac{49}{45\cdot49}-\frac{45}{45\cdot49}\right)\)

\(=4\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{45}-\frac{1}{49}\right)\)

\(=4\left(1-\frac{1}{49}\right)\)

\(=4\cdot\frac{48}{49}\)

\(=\frac{192}{49}\)

7 tháng 8 2017

Ta có:

\(\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+...+\frac{1}{60.61}\)

\(=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+...+\frac{1}{60}-\frac{1}{61}\)

\(=\frac{1}{2}-\frac{1}{61}=\frac{59}{122}\)

b) \(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{45.49}\)

\(=\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{45.49}\)

\(=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{45}-\frac{1}{49}\)

\(=\frac{1}{5}-\frac{1}{49}=\frac{44}{245}\)

7 tháng 8 2017

Bn Tấn sai rùi

phần a , câu cuối là \(\frac{1}{20}\)chứ đâu phải \(\frac{1}{2}\)

13 tháng 3 2016

a) \(=\frac{9}{1.4}+\frac{9}{4.7}+\frac{9}{7.10}+...+\frac{9}{61.64}\)

\(=3\left(\frac{1}{1}-\frac{1}{64}\right)\)

\(=\frac{189}{64}\)

b) \(=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)

\(=\frac{1}{1}-\frac{1}{25}\)

\(=\frac{24}{25}\)

c) Chưa học tới

13 tháng 3 2016

b)1/1.5+1/5.9+1/9.13+...+1/21.25

=1/4.(4/1.5+4/5.9+4/9.13+4/21.25)

=1/4.(4-4/5+4/5-4/9+4/9-4/13+...+4/21-4/25)

=1/4.(4-4/25)

=1/4.(100/25-4/25)

=1/4.96/25

=24/25

21 tháng 5 2020

\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)

\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)

\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)

\(=1-\frac{1}{2005}\)

\(=\frac{2004}{2005}\)

12 tháng 4 2017

bạn k cho mình chưa zậy ko là xóa kết bạn đây

9 tháng 4 2018

\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)

\(\Leftrightarrow\)\(100=2x+4\)

\(\Leftrightarrow\)\(2x=96\)

\(\Leftrightarrow\)\(48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)

\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)

\(\Leftrightarrow\)\(49=x+1\)

\(\Leftrightarrow\)\(x=48\)

Vậy \(x=48\)

Chúc bạn học tốt ~ 

21 tháng 7 2018

\(4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x.\left(x+4\right)}\)

\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}\) 

\(4A=1-\frac{1}{x+4}\) 

\(4A=\frac{x+4-1}{x+4}\)   

\(A=\frac{x+3}{\text{4(x+4)}}\)

Bạn tự thay rồi tính nhé 

21 tháng 7 2018

\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+........+\frac{1}{x\cdot\left(x+4\right)}\)

\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+........+\frac{4}{x\cdot\left(x+4\right)}\)

\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{x}-\frac{1}{x+4}\)

\(4A=1-\frac{1}{x+4}\)

\(A=\left(1-\frac{1}{x+4}\right):4\)

Khi x = 12 => \(A=\left(1-\frac{1}{12+4}\right):4\)

A = \(\left(1-\frac{1}{16}:4\right)\)

A = \(\frac{15}{16}:4=\frac{15}{64}\)

Khi x = 2 => \(A=\left(1-\frac{1}{2+4}\right):4\)

A = \(\left(1-\frac{1}{6}\right):4\)

\(=\frac{5}{6}:4=\frac{5}{24}\)

Khi x = \(\frac{5}{6}\)=> \(A=\left(1-\frac{1}{\frac{5}{6}+4}\right):4\)

A = \(\left(1-\frac{1}{\frac{29}{6}}\right):4\)

A = \(\frac{23}{29}:4=\frac{23}{116}\)

22 tháng 7 2015

Chỉ cần để các thừa số ra ngoài rồi nhân các số mà bằng khoảng cách của mẫu lên tử là giải được

3 tháng 4 2017

tôi biết câu này nè