Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(413.\left(413-26\right)+169=413^2-2.13.413+13^2=\left(413-13\right)^2=160000\)
b) \(\left(625^2+3\right).\left(25^4-3\right)-5^{16}+10\)
\(=\left(5^8+3\right)\left(5^8-3\right)-5^{16}+10\)
\(=5^{16}-9-5^{16}+10=1\)
c) \(\frac{41^2+39^2+8^2.39}{41^2-39^2}=\frac{\left(41+39\right)^2}{\left(41-39\right)\left(41+39\right)}=\frac{41+39}{41-39}=\frac{80}{2}=40\)
a)\(\frac{59^3-41^3}{18}+59.41=\frac{\left(59-41\right)\left(59^2+59.41+41^2\right)}{18}+59.41\)
\(=\frac{18.\left(59^2+59.41+41^2\right)}{18}+59.41=59^2+59.41+41^2+59.41=59^2+2.59.41+41^2=\left(59+41\right)^2=100^2\)
=10000
Pythagorean theorem: \(AD=\sqrt{BD^2-AB^2}=4\) (cm)
\(\Rightarrow BC=AD=4\left(cm\right)\)
\(CC'=\sqrt{BC'^2-BC^2}=4\sqrt{2}\)
The lateral surface area: \(2CC'.\left(BC+AB\right)=56\sqrt{2}\left(cm^2\right)\)
\(\frac{x-5}{45}-1+\frac{x-7}{43}-1=\frac{x-9}{41}-1+\frac{x-11}{39}-1\)
\(\Leftrightarrow\frac{x-50}{45}+\frac{x-50}{43}=\frac{x-50}{41}+\frac{x-50}{39}\)
\(\Leftrightarrow\left(x-50\right)\left(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\right)=0\)
\(\Leftrightarrow x-50=0\) (do \(\frac{1}{45}+\frac{1}{43}-\frac{1}{41}-\frac{1}{39}\ne0\))
\(\Rightarrow x=50\)
\(A=\frac{5x^2-26x+41}{\left(x-2\right)^2}=\frac{4\left(x^2-4x+4\right)+\left(x^2-10x+25\right)}{\left(x-2\right)^2}=4+\frac{\left(x-5\right)^2}{\left(x-2\right)^2}\ge4\forall x\)
Dấu "=" xảy ra khi \(x-5=0\Rightarrow x=5\)
Vậy GTNN của A là 4 khi x = 5
a) \(\frac{5x^2-20x+20-6x+21}{\left(x-2\right)^2}=\frac{5\left(x^2-4x+4\right)-6\left(x-2\right)+9}{\left(x-2\right)^2}\)
=\(\frac{5\left(x-2\right)^2-6\left(x-2\right)+9}{\left(x-2\right)^2}=5-\frac{6}{\left(x-2\right)}+\frac{9}{\left(x-2\right)^2}=\left(\frac{3}{x-2}-1\right)^2+4\ge4\)
'=' xảy ra \(\Leftrightarrow\frac{3}{x-2}-1=0\Leftrightarrow x=5\)
Vậy ...
\(205^2-95^2=\)
\(=\left(205-95\right)\left(205+95\right)\)
\(=200.300\)
\(=60000\)
\(36^2-14^2=\)
\(=\left(36-14\right)\left(36+14\right)\)
\(=22.50\)
\(=1100\)
\(205^2-95^2=\left(205-95\right)\left(205+95\right)=110.300=33000\)
\(36^2-14^2=\left(36-14\right)\left(36+14\right)=22.50=1100\)
\(97^2-3^2=\left(97-3\right)\left(97+3\right)=94.100=9400\)
\(=\frac{41^2-39}{41^2+39^2+2.41.39}\)
\(=\frac{41^2-39}{41^2+2.41.39+39^2}\)
\(=\frac{41^2-39}{\left(41+39\right)^2}\)
\(\)