Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4^{1007}.9^{1007}}{3^{2015}.16^{503}}=\frac{4^{1007}.\left(3^2\right)^{1007}}{3^{2015}.\left(4^2\right)^{503}}=\frac{4^{1007}.3^{2014}}{3^{2015}.4^{1006}}=\frac{4}{3}\)
\(\frac{4^{1007}.9^{1007}}{3^{2015}.2^{2016}}=\frac{\left(2^2\right)^{1007}.\left(3^2\right)^{1007}}{3^{2015}.2^{2016}}\)
\(=\frac{2^{2014}.3^{2014}}{3^{2015}.2^{2016}}=\frac{2^{2014}.3^{2014}}{3^{2014}.2^{2014}.3.2^2}\)
\(=\frac{1}{3.2^2}=\frac{1}{3.4}=\frac{1}{12}\)
Rút gọn
\(\frac{4^{1007}\cdot9^{1007}}{3^{2015}\cdot2^{2016}}=\frac{\left(2^2\right)^{2007}\cdot\left(3^2\right)^{1007}}{3^{2015}\cdot2^{2016}}\)
\(=\frac{2^{2\cdot1007}\cdot3^{2\cdot1007}}{3^{2015}\cdot2^{2016}}=\frac{2^{2014}\cdot3^{2014}}{3^{2015}\cdot2^{2016}}\)
\(=\frac{1}{3.2^2}=\frac{1}{12}\)
Vậy ...
hok tót .
Bài giải
\(\frac{2-x}{2015}+\frac{3-x}{1007}+\frac{4-x}{671}=\frac{2005-x}{2}\)
\(( \frac{2-x}{2015}+1 )+ (\frac{3-x}{1007}+2 )+ ( \frac{4-x}{671}+3 )=\frac{2005-x}{2}+6\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}=\frac{2017-x}{2}\)
\(\frac{2017-x}{2015}+\frac{2017-x}{1007}+\frac{2017-x}{671}-\frac{2017-x}{2}=0\)
\((2017-x)(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2})=0\)
Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{2}\ne0\)
\(\Rightarrow\text{ }2017-x=0\)
\(\Rightarrow\text{ }x=2017\)
\(\frac{x+2}{2017}+\frac{x+3}{2016}+\frac{x+4}{2015}+\frac{x+5}{1007}+\frac{x+2074}{11}=0\)
\(\Leftrightarrow\frac{x+2}{2017}+1+\frac{x+3}{2016}+1+\frac{x+4}{2015}+1+\frac{x+5}{1007}+2+\frac{x+2074}{11}-5=0\)
\(\Leftrightarrow\frac{x+2019}{2017}+\frac{x+2019}{2016}+\frac{x+2019}{2015}+\frac{x+2019}{1007}+\frac{x+2019}{11}=0\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)=0\)
\(\Leftrightarrow\left(x+2019\right)=0vì\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{1007}+\frac{1}{11}\right)\ne0\)
\(\Leftrightarrow x=-2019\)
\(\frac{1-x}{2015}+\frac{2-x}{1007}+\frac{3-x}{671}=\frac{1992-x}{4}\)
\(\Rightarrow\frac{1-x}{2015}+1+\frac{2-x}{1007}+2+\frac{3-x}{671}+3=\frac{1992-x}{4}+6\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}=\frac{2016-x}{4}\)
\(\Rightarrow\frac{2016-x}{2015}+\frac{2016-x}{1007}+\frac{2016-x}{671}-\frac{2016-x}{4}=0\)
\(\Rightarrow\left(2016-x\right)\left(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\right)=0\)
\(\Rightarrow2016-x=0\).Do \(\frac{1}{2015}+\frac{1}{1007}+\frac{1}{671}-\frac{1}{4}\ne0\)
\(\Rightarrow x=2016\)
=(22014.32014/32015.22012) -1 = 22/3 -1 = 1/3
tính giá trị biểu thức nha