Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)
\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)
\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)
\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)
\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)
\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)
Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé
\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)
a) \(\sqrt{\frac{2}{3}}=\sqrt{\frac{2.3}{3.3}}=\frac{\sqrt{6}}{3}\)
b) \(\sqrt{\frac{x^2}{2}}=\sqrt{\frac{2x^2}{2.2}}=\frac{x\sqrt{2}}{2}\)
c) \(\sqrt{\frac{x}{y}}=\sqrt{\frac{xy}{y.y}}=\frac{\sqrt{xy}}{y}\)
d) \(\sqrt{\frac{9x^3}{25y}}=\sqrt{\frac{9x^3.y}{25y^2}}=\frac{3x\sqrt{xy}}{5y}\)
b)
)\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
= \(\frac{2}{2-\sqrt{5}}-\frac{2}{2+\sqrt{5}}\)
=\(\frac{2\left(2+\sqrt{5}\right)-2\left(2-\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}\)
=\(\frac{4+2\sqrt{5}-4+2\sqrt{5}}{2^2-\sqrt{5}^2}\)
=\(\frac{4\sqrt{5}}{4-5}\)
=\(\frac{4\sqrt{5}}{-1}\)
\(-4\sqrt{5}\)
\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\) \(=\frac{3x}{7y}|\frac{7y}{3x}|\left(1\right)\)
mà \(x>0,y< 0\)
=>\(\left(1\right)\) = \(\frac{3x.\left(-7y\right)}{7y.3x}=-1\)
chúc bn học tốt
\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\)
\(=\frac{3x}{7y}\sqrt{\frac{\left(7y\right)^2}{\left(3x\right)^2}}\)\(=\frac{3x}{7y}\cdot\frac{\left|7y\right|}{\left|3x\right|}\)
mak ta có \(x>0;y< 0\)
\(\Rightarrow\frac{3x}{7y}\cdot\frac{-7y}{3x}\)\(\Rightarrow\frac{3x\cdot-7y}{7x\cdot3x}=\left(-1\right)\)
\(\Rightarrow\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}=\left(-1\right)\)