K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

\(GT\Leftrightarrow3x^2+y^2+z^2+\left(y+z\right)^2=2\)

Áp dụng BĐT bunyakovsky:\(y^2+z^2\ge\frac{1}{2}\left(y+z\right)^2\)

\(2\ge\frac{3}{2}\left(y+z\right)^2+3x^2\Leftrightarrow4\ge3\left(y+z\right)^2+6x^2=3\left[\left(y+z\right)^2+2x^2\right]\)

\(\left(2+1\right)\left[\left(y+z\right)^2+2x^2\right]\ge2\left(x+y+z\right)^2\)

\(\left(x+y+z\right)^2\le2\Leftrightarrow-\sqrt{2}\le x+y+z\le\sqrt{2}\)

28 tháng 10 2018

\(M=\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\le\frac{x}{2x}+\frac{y}{2y}+\frac{z}{2z}=\frac{3}{2}\)

Nên max M là \(\frac{3}{2}\) khi x=y=z=1

\(x+y+z=3\ge x,y,z\)\(\Rightarrow M\ge\frac{x}{10}+\frac{y}{10}+\frac{z}{10}=\frac{3}{10}\)

Nên min M là \(\frac{3}{10}\) khi trong x,y,z có 2 số bằng 0 và 1 số bằng 3

1 tháng 9 2019

\(P\ge\frac{x+y+z}{2}=\frac{\sqrt{\left(x+y+z\right)^2}}{2}\ge\frac{\sqrt{3\left(xy+yz+zx\right)}}{2}=\frac{\sqrt{3}}{2}\)

\("="\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

23 tháng 10 2016

đề sai à bn

23 tháng 10 2016

đề đúng đó bạn

18 tháng 8 2020

+) \(P=\frac{x^2}{y^2+yz+z^2}+\frac{y^2}{x^2+xz+z^2}+\frac{z^2}{x^2+xy+y^2}\)

\(\ge\text{Σ}\frac{x^2}{y^2+\frac{y^2+z^2}{2}+z^2}=\frac{2}{3}\text{Σ}\frac{x^2}{y^2+z^2}\)

+) Đặt \(a=x^2;b=y^2;c=z^2\)

Ta có: \(A=\text{Σ}\frac{x^2}{y^2+z^2}=\text{Σ}\frac{a}{b+c}=\text{Σ}\frac{a^2}{ab+ac}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\ge\frac{3}{2}\)(BDT Nesbitt)

Vậy \(P=\frac{2}{3}A\ge1\)

Dấu = xảy ra khi x = y = z

27 tháng 3 2017

Hi! Mình có lời giải cho phần này rồi. Mình sẽ post lên sớm

28 tháng 3 2017

Hi ~! Mình xin slot trước :)

Giải

Dự đoán dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\) khi đó \(P=\frac{3\sqrt{3}}{4}\)

Ta sẽ chứng minh nó là GTNN của \(P\)

Ta có: \(x^2+xy+y^2=\frac{3\left(x+y\right)^2+\left(x-y\right)^2}{4}\ge\frac{3\left(x+y\right)^2}{4}\)

Do đó ta cần chứng minh 

\(\frac{x+y}{4yz+1}+\frac{y+z}{4xz+1}+\frac{x+z}{4xy+1}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{x+y}{\left(y+z\right)^2+1}+\frac{y+z}{\left(x+z\right)^2+1}+\frac{x+z}{\left(x+y\right)^2+1}\ge\frac{3}{2}\)

Ta có: \(x+y+z=\frac{3}{2}\Rightarrow2x+2y+2z=3\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(x+z\right)=2\)

Đặt \(\hept{\begin{cases}a=x+y\\b=y+z\\c=z+x\end{cases}}\) thì ta cần chứng minh 

\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}\)\(\forall\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}}\)

Lại có: \(\frac{a}{b^2+1}=a-\frac{ab^2}{b^2+1}\ge a-\frac{ab}{2}\)

Tương tự ta cũng có: \(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ac}{2}\)

Cộng theo vế các BĐT ta có: \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge a-\frac{ab}{2}+b-\frac{bc}{2}+c-\frac{ac}{2}\)

\(=\left(a+b+c\right)-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}\) 

BĐT đã được c/m vậy ta có \(P\ge\frac{3\sqrt{3}}{4}\Leftrightarrow x=y=z=\frac{1}{2}\)

14 tháng 8 2020

\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)

\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)

Dấu = xảy ra khi \(x=y=z=1\)