Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{2x}{4}-\frac{3}{5}=\frac{x}{4}\)
\(\Rightarrow\frac{2x}{4}-\frac{x}{4}=\frac{3}{5}\)
\(\Rightarrow\frac{x}{4}=\frac{3}{5}\)
=> 5x = 12
=> x= 12/5
A=\(\frac{1}{3}-\frac{3}{5}+\frac{5}{7}-\frac{7}{9}+\frac{9}{11}-\frac{11}{13}-\frac{9}{11}+\frac{7}{9}-\frac{5}{7}+\frac{3}{5}-\frac{1}{3}\)
A=[ \(\frac{1}{3}-\frac{1}{3}\)] + [ \(-\frac{3}{5}+\frac{3}{5}\)] + [ \(-\frac{5}{7}+\frac{5}{7}\)] + [ \(-\frac{7}{9}+\frac{7}{9}\)] + [ \(-\frac{9}{11}+\frac{9}{11}\)] \(-\frac{11}{13}\)
Các bạn tự làm tiếp nhé!Sorry
B < 1+1+1/2.3+1/3.4+...+1/62.63
B < 2+(1/2-1/3+1/3-1/4+...+1/62-1/63)
B < 2+(1/2-1/63)
B < 2+61/126 suy ra B < 2 và 6/126
Mà 2 + 61/126 <6
Suy ra B< 2+6/126<6 suy tiếp B < 6
Ta có
\(\frac{1}{3^{400}}=\frac{1}{\left(3^4\right)^{100}};\frac{1}{4^{300}}=\frac{1}{\left(4^3\right)^{100}}\)
\(\Rightarrow\frac{1}{3^4}< \frac{1}{4^3}\left(3^4>4^3\right)\\
\Rightarrow\frac{1}{3^{400}}< \frac{1}{4^{300}}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{x\left(x+1\right)}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{215}{216}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{216}\)
\(\Leftrightarrow x=216-1=215\)
\(\frac{3-x}{5}=\frac{1}{4}\)
\(\Rightarrow4.\left(3-x\right)=5\)
\(\Rightarrow12-4x=5\)
\(\Rightarrow4x=12-5\)
\(\Rightarrow4x=7\)
\(\Rightarrow x=\frac{7}{4}\)
Vậy x = \(\frac{7}{4}\)
\(\frac{7}{4}\)