Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÁCH LÀM NHƯ SAU :
(7/28 + 1/28) + 1/70 + 1/130 + 1/x.(x+3)
8/28 + 1/70 +1/130 +1/x.(x+3)
2/7+1/70+1/130+1/x.(x+3)
(20/70 +1/70)+1/130+1/x.(x+3)
3/10+1/130+1/x.(x+3)
39/130+1/130+1/x.(x+3)
4/13+1/x.(x+3)
Đến đây bn tự làm hộ mình vớ. chúc hok tốt k cho mình nhé
\(\frac{1}{4}+\frac{1}{28}+\frac{1}{70}+\frac{1}{130}+\frac{1}{x\left(x+3\right)}\)
\(=\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+\frac{1}{x\left(x+3\right)}\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}\left(\frac{12}{13}+\frac{1}{x}-\frac{1}{x+3}\right)\)
\(=\frac{1}{3}.\frac{12}{13}+\frac{1}{3}.\frac{1}{x}-\frac{1}{3}.\frac{1}{x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}-\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3x+3}\)
\(=\frac{4}{13}+\frac{1}{3x}=\frac{1}{3}.\frac{1}{x+3}\)
\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3x}\)
\(=\frac{4}{13}=\frac{1}{3}.\frac{1}{x+3}-\frac{1}{3}.\frac{1}{x}\)
\(=\frac{4}{13}=\frac{1}{3}\left(\frac{1}{x+3}-\frac{1}{x}\right)\)
\(=\frac{4}{13}:\frac{1}{3}=\frac{1}{x+1}-\frac{1}{x}\)
\(=\frac{12}{13}=\frac{1}{x+1}-\frac{1}{x}\)
\(=\frac{12}{13}=\frac{x-\left(x+1\right)}{\left(x+1\right)x}\)
\(=\frac{12}{13}=-\frac{1}{x^2+x}\)
\(\Leftrightarrow=12\left(x^2+x\right)=13.\left(-1\right)\)
\(=12\left(x^2+x\right)=-13\)
\(=x^2+x=-\frac{13}{12}\)
\(=x\left(x+1\right)=-\frac{13}{12}\)
.... Chiụ
A=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{2012}{2013}\)=\(\frac{1}{2013}\)
B=\(\frac{2012}{2012.2013}\)=\(\frac{1}{2013}\)
vậy A=B
\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot\frac{5}{6}=\frac{1\cdot2\cdot3\cdot4\cdot5}{2\cdot3\cdot4\cdot5\cdot6}=\frac{1}{6}\)
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}\)
= \(\frac{1.2.3.4.5}{2.3.4.5.6}\)
= \(\frac{1}{6}\)
\(\frac{1995}{1996}.\frac{19961996}{19311931}.\frac{19311931}{19951995}=\frac{1995}{1996}.\frac{1996}{1931}.\frac{1931}{1995}=1\)
\(\frac{1313}{2121}.\frac{165165}{143143}.\frac{424242}{151515}=\frac{13}{21}.\frac{165}{143}.\frac{42}{15}=\frac{1}{1}.\frac{11}{11}.\frac{2}{1}=2\)
Đặt \(A=\frac{4}{3}\cdot\frac{4}{7}+\frac{4}{7}\cdot\frac{4}{11}+...+\frac{4}{95}\cdot\frac{4}{99}\)
\(A=\frac{16}{21}+\frac{16}{77}+...+\frac{16}{9405}\)
\(A=\frac{16}{3\cdot7}+\frac{16}{7\cdot11}+....+\frac{16}{95\cdot99}\)
\(A=\frac{16}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=4\cdot\left(\frac{1}{3}\cdot\frac{1}{99}\right)=4\cdot\frac{32}{99}=\frac{128}{99}\)
\(T=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{575}{576}.\frac{624}{625}\)
\(T=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{23.25}{24.24}.\frac{24.26}{25.25}\)
\(T=\frac{1.2.3....24}{2.3.4...25}.\frac{3.4.5....26}{2.3.4....25}=\frac{1}{25}.\frac{26}{2}=\frac{13}{25}\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{99}\right)=\frac{3}{2}.\frac{4}{3}...\frac{100}{99}=\frac{100}{2}=50\)
= \(\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot\cdot\cdot\cdot\frac{99}{98}\cdot\frac{100}{99}=\frac{3.4.5....99.100}{2.3.4....98.99}=\frac{100}{2}=50\)
\(\frac{28}{700}=28.\frac{28.}{700.}\)
\(\frac{28}{700}:28=\frac{28.}{700.}\)
\(\frac{1}{700}=\frac{28.}{700.}\)
=> \(\frac{1}{700}:\frac{28}{700}=\frac{1}{28}\)
Vậy số cần tìm ở phần tử số là 1, số cần tìm ở phần mẫu số là 28
K mk nha bạn, mk nhanh nhất thật