Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{24}{48}\)+ \(\frac{12}{48}\)+ \(\frac{8}{48}\)+ \(\frac{2}{48}\)+ \(\frac{1}{48}\)
A = \(\frac{24+12+8+2+1}{48}\)= \(\frac{47}{48}\)
ai tốt bụng thì tk cho mk nha
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}.\)
\(=2\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{96}-\frac{1}{192}\right)\)
\(=2\times\left(1-\frac{1}{192}\right)\)
\(=2\times\frac{191}{192}=\frac{191}{68}\)
\(\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}\)
\(=\frac{1}{3.1}+\frac{1}{3.2}+\frac{1}{3.2^2}+...+\frac{1}{3.2^6}\)
\(=\frac{1}{3}.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(=\frac{1}{3}.A\)với \(A=\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\)
\(\Rightarrow2A=2.\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow2A=2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\)
\(\Rightarrow2A-A=\left(2+\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2^5}\right)-\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^6}\right)\)
\(\Rightarrow A=2-\frac{1}{2^6}=2-\frac{1}{64}=\frac{127}{64}\)
\(\Rightarrow\frac{2}{3}+\frac{2}{6}+\frac{2}{12}+\frac{2}{24}+...+\frac{2}{192}=\frac{1}{3}.\frac{127}{64}=\frac{127}{192}\)
\(\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}=\frac{2}{5}\)
\(\frac{1}{2}:\frac{3}{4}:\frac{5}{6}=\frac{1}{2}\times\frac{4}{3}\times\frac{6}{5}=\frac{1\times2\times2}{5}=\frac{4}{5}\)
\(\left(\frac{2}{11.13}+\frac{2}{13.15}+...+\frac{2}{19.21}\right).462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{13}+...+\frac{1}{19}-\frac{1}{21}\right)\cdot462-x=19\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)\cdot462-x=19\)
\(\frac{10}{231}.462-x=19\)
\(20-x=19\)
\(x=20-19\)
\(x=1\)
Đề abfi sai. Chỗ đó là 19, k phải 29
Bạn biết tính chất này không?
\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
Sử dụng tính chất đó thì được:
\(\left(\frac{2}{11}-\frac{2}{13}+\frac{2}{13}-\frac{2}{15}+...+\frac{2}{19}-\frac{2}{21}\right)\)x 462 - x =19
\(\left(\frac{2}{11}-\frac{2}{21}\right)\cdot462-x=19\)
\(\frac{924}{11}-\frac{924}{21}-x=19\)
84 - 44 - x =19
40 - x = 19
x = 40 - 19
x = 21
Nhớ tk cho mình nếu đúng nhé
Đặt S =\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\)
3S = \(3\times\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
3S \(=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\)
3S - S \(=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}\right)-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1458}+\frac{1}{4374}\right)\)
2S = \(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{486}+\frac{1}{1458}-\frac{1}{2}-\frac{1}{6}-...-\frac{1}{1458}-\frac{1}{4374}\)
2S = \(\frac{3}{2}-\frac{1}{4374}\)
2S = \(\frac{3280}{2187}\)
\(\Rightarrow S=\frac{3280}{2187}:2=\frac{4373}{8748}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)