Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{\frac{2000}{11}+\frac{2000}{12}+...+\frac{2000}{100}}{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{98}{2}+\frac{99}{1}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\left(1+\frac{1}{99}\right)+\left(1+\frac{2}{98}\right)+...+\left(1+\frac{98}{2}\right)+1}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{100}{99}+\frac{100}{98}+...+\frac{100}{2}+\frac{100}{100}}\)
\(\Rightarrow A=\frac{2000.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{100.\left(\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}\right)}\)
\(\Rightarrow A=\frac{20.\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\right)}{\frac{1}{99}+\frac{1}{98}+...+\frac{1}{2}+\frac{1}{100}}\)
\(\Rightarrow A=\frac{\frac{20}{11}+\frac{20}{12}+..+\frac{20}{100}}{\frac{1}{99}+\frac{1}{98}+..+\frac{1}{2}+\frac{1}{100}}\)
\(\left(\frac{x-10}{1994}-1\right)\)+\(\left(\frac{x-8}{1996}-1\right)\)+\(\left(\frac{x-6}{1998}-1\right)\)+\(\left(\frac{x-4}{2000}-1\right)\)+\(\left(\frac{x-2}{2002}-1\right)\)=\(\left(\frac{x-2002}{2}-1\right)\)+\(\left(\frac{x-2000}{4}-1\right)\)+\(\left(\frac{x-1998}{6}-1\right)\)+\(\left(\frac{x-1996}{8}-1\right)\)+\(\left(\frac{x-1994}{10}-1\right)\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)=\(\frac{x-2004}{2}\)+\(\frac{x-2004}{4}\)+\(\frac{x-2004}{6}\)+\(\frac{x-2004}{8}\)+\(\frac{x-2004}{10}\)
suy ra \(\frac{x-2004}{1994}\)+\(\frac{x-2004}{1996}\)+\(\frac{x-2004}{1998}\)+\(\frac{x-2004}{2000}\)+\(\frac{x-2004}{2002}\)- \(\frac{x-2004}{2}\)- \(\frac{x-2004}{4}\)- \(\frac{x-2004}{6}\)- \(\frac{x-2004}{8}\)- \(\frac{x-2004}{10}\)=0
suy ra (x-2004) . ( \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\))=0
Vì \(\frac{1}{1994}\)+\(\frac{1}{1996}\)+\(\frac{1}{1998}\)+\(\frac{1}{2000}\)+\(\frac{1}{2002}\)-\(\frac{1}{2}\)-\(\frac{1}{4}\)-\(\frac{1}{6}\)- \(\frac{1}{8}\)- \(\frac{1}{10}\) khác 0
nên x-2004=0 suy ra x=2004
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
Ta có: \(\frac{a+c}{b+d}\)= \(\frac{kb+kd}{b+d}\)=\(\frac{k\left(b+d\right)}{b+d}\)=k (1)
\(\frac{a-c}{b-d}\)= \(\frac{kb-kd}{b-d}\)=\(\frac{k\left(b-d\right)}{b-d}\)=k (2)
Từ (1) và (2) =>\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)
\(S=2000\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2000.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=2000.\left(1-\frac{1}{100}\right)=\frac{2000.99}{100}=20.99=1980\)