K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2019

a) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)

\(\Leftrightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}=\frac{x+2005}{2002}+\frac{x+2005}{2001}\)

\(\Leftrightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)

\(\Leftrightarrow x+2005=0\)

\(\Leftrightarrow x=-2005\)

b) Sửa đề :

\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\Leftrightarrow x=300\)

c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2-x}{2002}+1=\frac{1-x}{2003}+1-\frac{x}{2004}+1\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}-\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}+\frac{1}{2004}\right)=0\)

\(\Leftrightarrow x=2004\)

Vậy....

https://olm.vn/hoi-dap/detail/212443421285.html

4 tháng 2 2017

\(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\\ \)
Cộng từng hạng tử của hai vế với 1
\(\frac{x+1}{2004}+1+\frac{x+2}{2003}+1=\frac{x+3}{2002}+1+\frac{x+4}{2001}+1\)
\(\Rightarrow\frac{x+1+2004}{2004}+\frac{x+2+2003}{2003}=\frac{x+3+2002}{2002}+\frac{x+4+2001}{2001}\)
\(\Rightarrow\frac{x+2005}{2004}+\frac{x+2005}{2003}-\frac{x+2005}{2002}-\frac{x+2005}{2002}=0\)
\(\Rightarrow\left(x+2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
Vì \(\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)\ne0\)nên \(x+2005=0\Rightarrow x=-2005\)
Phương trình có nghiệm duy nhất: x=2005

4 tháng 2 2017

(x+1)/2004+(x+2)/2003=(x+3)/2002+(x+4)/2001

(x+1)/2004+1  +(x+2)/2003 +1=(x+3)/2002+1 (x+4)/2001+1

=> x+2005/2004+(x+2005)/2003-(x+2005)/2002-(x+2005)/2002=0

(x+2005)(1/2004+1/2003-1/2002-1/2001)=0

=>x+2005=0

=>x=-2005

23 tháng 2 2020

Ta có : \(\frac{x^2-2008}{2007}+\frac{x^2-2007}{2006}+\frac{x^2-2006}{2005}=\frac{x^2-2005}{2004}+\frac{x^2-2004}{2003}+\frac{x^2-2003}{2002}\)

=> \(\frac{x^2-2008}{2007}+1+\frac{x^2-2007}{2006}+1+\frac{x^2-2006}{2005}+1=\frac{x^2-2005}{2004}+1+\frac{x^2-2004}{2003}+1+\frac{x^2-2003}{2002}+1\)

=> \(\frac{x^2-2008}{2007}+\frac{2007}{2007}+\frac{x^2-2007}{2006}+\frac{2006}{2006}+\frac{x^2-2006}{2005}+\frac{2005}{2005}=\frac{x^2-2005}{2004}+\frac{2004}{2004}+\frac{x^2-2004}{2003}+\frac{2003}{2003}+\frac{x^2-2003}{2002}+\frac{2002}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}=\frac{x^2-1}{2004}+\frac{x^2-1}{2003}+\frac{x^2-1}{2002}\)

=> \(\frac{x^2-1}{2007}+\frac{x^2-1}{2006}+\frac{x^2-1}{2005}-\frac{x^2-1}{2004}-\frac{x^2-1}{2003}-\frac{x^2-1}{2002}=0\)

=> \(\left(x^2-1\right)\left(\frac{1}{2007}+\frac{1}{2006}+\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}-\frac{1}{2002}\right)=0\)

=> \(x^2-1=0\)

=> \(x^2=1\)

=> \(x=\pm1\)

Vậy phương trình có 2 nghiệm là x = 1, x = -1 .

24 tháng 2 2020

Thanks bn

4 tháng 4 2016

Bất phương trình là sao hả bạn? Có dấu ''='' à?

4 tháng 4 2016

xin lỗi mình viết lộn

4 tháng 4 2016

2 -x/2002 + 1 -1 = 1-x/2003 + 1 - x/2004 + 1

=> 2004 - x/ 2002 = 2004 - x/ 2003 + 2004 -x/2004

=> (2004 -x) ( 1/2002-1/2003-1/2004)

ta thấy ( 1/2002-1/2003-1/2004) # 0

=> 2004 -x = 0 => x = 2004

17 tháng 2 2020

a)\(\frac{201-x}{99}+1+\frac{203-x}{97}+1+\frac{205-x}{95}+1=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)

\(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\Rightarrow300-x=0\Rightarrow x=300\)

b)\(\frac{2-x}{2002}+1=\frac{1-x}{2003}+2-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{1-x}{2003}+1+1-\frac{x}{2004}\)

\(\Leftrightarrow\frac{2004-x}{2002}=\frac{2004-x}{2003}+\frac{2004-x}{2004}\)

\(\Leftrightarrow\left(2004-x\right)\left(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\ne0\Rightarrow2004-x=0\Rightarrow x=2004\)

c)\(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}-2=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}-2\)

\(\Leftrightarrow\frac{x^2-10x-2000}{1971}+\frac{x^2-10x-2000}{1973}=\frac{x^2-10x-2000}{29}+\frac{x^2-10x-2000}{27}\)

\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\right)=0\)

\(\frac{1}{1971}+\frac{1}{1973}-\frac{1}{29}-\frac{1}{27}\ne0\)

\(\Rightarrow x^2-10x-2000=0\Leftrightarrow\left(x+40\right)\left(x-50\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+40=0\\x-50=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-40\\x=50\end{matrix}\right.\)