K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2020

lớp 1

17 tháng 5 2020

lop may vay ban

16 tháng 10 2020

30. \(\tan x+\cot x=2\sin\left(x+\frac{\pi}{4}\right)\)

ĐK: \(x\ne\frac{k\pi}{2}\)

pt <=> \(\frac{1}{\sin x.\cos x}=2\sin\left(x+\frac{\pi}{4}\right)\)

<=> \(\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)\)

Đánh giá: \(-1\le\sin2x\le1\)

=> \(\orbr{\begin{cases}\frac{1}{\sin2x}\le-1\\\frac{1}{\sin2x}\ge1\end{cases}}\)

\(-1\le\sin\left(x+\frac{\pi}{4}\right)\le1\)

Như vậy dấu "=" xảy ra <=> \(\orbr{\begin{cases}\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=-1\\\frac{1}{\sin2x}=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

<=> \(\orbr{\begin{cases}\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\\\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\end{cases}}\)

TH1: \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=-1\)

<=> \(\hept{\begin{cases}2x=-\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=-\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{\pi}{4}+k\pi\\x=-\frac{3\pi}{4}+k2\pi\end{cases}}\)loại

TH2: 

 \(\sin2x=\sin\left(x+\frac{\pi}{4}\right)=1\)

<=> \(\hept{\begin{cases}2x=\frac{\pi}{2}+k2\pi\\x+\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{\pi}{4}+k\pi\\x=\frac{\pi}{4}+k2\pi\end{cases}}\Leftrightarrow x=\frac{\pi}{4}+k2\pi\)

Vậy ...

16 tháng 10 2020

29) \(\sin x-2\sin2x-\sin3x=2\sqrt{2}\)

<=> \(\left(\sin x-\sin3x\right)-2\sin2x=2\sqrt{2}\)

<=> \(-2.\sin x\cos2x-2\sin2x=2\sqrt{2}\)

<=> \(\sin x\cos2x+\sin2x=-\sqrt{2}\)

Ta có: \(\left(\sin x\cos2x+\sin2x\right)^2\le\left(\sin^2x+1\right)\left(\sin^22x+\cos^22x\right)=\sin^2x+1\le2\)

( theo bunhia)

=> \(-\sqrt{2}\le\sin x\cos2x+\sin2x\le\sqrt{2}\)

Dấu "=" xảy ra <=> \(\frac{\sin x}{1}=\frac{\cos2x}{\sin2x}\)(1) và \(\sin x\cos2x+\sin2x=-\sqrt{2}\)(2)

(1) <=> \(\frac{\sin x.\cos2x}{1}=\frac{\cos^22x}{\sin2x}\)=> (2) <=>  \(\frac{\cos^22x}{\sin2x}+\sin2x=-\sqrt{2}\)

<=> \(\frac{1}{\sin2x}=-\sqrt{2}\)<=> \(\sin2x=-\frac{\sqrt{2}}{2}\)<=> \(\orbr{\begin{cases}x=-\frac{\pi}{8}+k\pi\\x=-\frac{3\pi}{8}+k\pi\end{cases}}\)

(1) <=> \(\sin x.\sin2x=\cos2x\)=> (2) <=> \(\sin x.\sin x.\sin2x+\sin2x=-\sqrt{2}\)

<=> \(\frac{\sin^2x}{2}+\frac{1}{2}=+1\Leftrightarrow\sin^2x=1\)=> \(\cos^2x=0\)loại vì \(\sin2x=-\frac{\sqrt{2}}{2}\)

Vậy pt vô nghiệm

2 tháng 1 2018

bài 1 a, hình như có thêm đk là a+b+c=3

2 tháng 1 2018

Bài 4 nha

Áp dụng BĐT cô si ta có

\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)

Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1

2 tháng 3 2016

0,01744974862

Quy ước gen : A - thân cao > a - thân thấp P : Aa x Aa  -> F1 . Cần phải lấy ít nhất bao nhiêu hạt ở F1 để trong số hạt đã lấy xác suất có ít nhất một hạt mang kiểu gen aa lớn hơn 80% . Bài làm : Aa x Aa => 3/4 A_ : 1/4 aa  gọi n là số hạt ít nhất phải lấy ra (ĐK: n nguyên dương ) XS =...
Đọc tiếp

Quy ước gen : A - thân cao > a - thân thấp 

P : Aa x Aa  -> F1 . Cần phải lấy ít nhất bao nhiêu hạt ở F1 để trong số hạt đã lấy xác suất có ít nhất một hạt mang kiểu gen aa lớn hơn 80% . 

Bài làm : Aa x Aa => 3/4 A_ : 1/4 aa 

 gọi n là số hạt ít nhất phải lấy ra (ĐK: n nguyên dương ) 

XS =  \(C^1_n.\left(\frac{3}{4}\right)^n+C^2_n.\left(\frac{3}{4}\right)^{n-1}.\left(\frac{1}{4}\right)+C^3_n.\left(\frac{3}{4}\right)^{n-2}.\left(\frac{1}{4}\right)^2+...+C^n_n.\left(\frac{1}{4}\right)^n\)

\(=\left(\frac{1}{4}\right)^n.\left(4^n-3^n\right)=1-\left(\frac{3}{4}\right)^n\) 

giả thiết => \(1-\left(\frac{3}{4}\right)^n>80\%\)<=> \(\left(\frac{3}{4}\right)^n< 0.2\)<=> \(n>log^{0.2}_{\frac{3}{4}}\)mà n nhỏ nhất => n = 6 

--------------------------------

tương tự nếu bài toán yc: Xác suất lấy n hạt ở F1 để trong số hạt đã lấycó ít nhất hai hạt mang kiểu gen aa . 

Như trên ta được XS = \(\left(\frac{1}{4}\right)^n.\left(4^n-3^n-C^1_n.3^{n-1}\right)\)

------------------------------------------- 

Công thức tổng quát :  xác suất lấy n hạt ở F1 để trong số hạt đã lấy ra có ít nhất m hạt mang kiểu gen aa là : 

XS = \(\left(\frac{1}{4}\right)^n.\left[4^n-\left(C^0_n.3^n+C^1_n.3^{n-1}+...+C^{m-1}_n.3^{n-m+1}\right)\right]\) (ĐK:\(1\le m< n\)

2
30 tháng 10 2016

đó mà là toán lớp 1 sỉu luôn

30 tháng 10 2016

toán như thế mà gọi là lớp 1 thì xỉu

24 tháng 8 2021

lop 1kho the

26 tháng 8 2021

Lớp 1 kiểu j vậy

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)