K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

trong phân số mẫu luôn thuộc Z và lớn hơn 0

nên a ∈ Z và a ≠ 0

\(\frac{1}{a+1}\)nếu a=-1 thì \(\frac{1}{-1+1}\)=\(\frac{1}{0}\)mẫu khác 0 nên a ≠ -1

2 tháng 3 2016

Ta có:

\(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{a}{a\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a\left(a+1\right)}=\frac{1}{a}=y\)

Đúng 100%

26 tháng 2 2018

Đây:

Ta có: \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(=\frac{a+1}{a\left(a+1\right)}\)

\(=\frac{1}{a}\)

Vậy \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)=\frac{1}{a}}\)

26 tháng 2 2018

quy đồng mẫu số vế phải là ra mak bạn

26 tháng 2 2018

\(\text{Ta có: }\)

\(VP=\frac{1}{a.\left(a+1\right)}=\frac{a+1-a}{a.\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}-\frac{a}{a.\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}=VT\left(đpcm\right)\)

17 tháng 3 2016

Ta có

1/a+1=1a/a(a+1)

=>1/a+1 + 1/a(a+1) = 1a/a(a+1) + 1/a(a+1) = 1a+1/a(a+1) =1.(a+1)/a.(a+1)=1/a => dpcm

1 tháng 5 2020

1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)

Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)

2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)

A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên 

<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=> \(n=\left\{-3;1;3;7\right\}\)

1 tháng 5 2020

Mình học dốt nên chỉ làm được bài 2 thôi :)

\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên

=> \(5⋮n-2\)

=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n317-3
16 tháng 3 2019

\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)

\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)

\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\text{Giả sử }a< b< c\)

\(\Rightarrow a\le2;b\le3;c\le5\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)

\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)

17 tháng 3 2019

ể ==

\(2< 3\Rightarrow\frac{1}{2}>\frac{1}{3}\)

Cậu Bé Tiến Pro: e đổi dấu đi :))