K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2016

\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+...+\frac{1}{4900}\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\frac{49}{50}=\frac{49}{100}\)

8 tháng 7 2018

\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)

\(=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{7}\right)\)

\(=\frac{1}{2}.\frac{6}{7}=\frac{3}{7}\)

8 tháng 7 2018

Đặt \(C=\frac{1}{2}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{84}\)

\(\Rightarrow\frac{C}{2}=1+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{6}-\frac{1}{7}\)

\(\Rightarrow C.\frac{1}{2}=1+\frac{1}{2}-\frac{1}{7}\)

\(\Rightarrow C=\left(1+\frac{1}{2}-\frac{1}{7}\right).2\)

11 tháng 7 2018

Tính nhanh : 

\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)

\(A=2\left(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+\frac{1}{8\cdot10}+\frac{1}{10\cdot12}+\frac{1}{12\cdot14}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)

\(A=2\left(\frac{1}{2}-\frac{1}{14}\right)\)

\(A=2\cdot\frac{3}{7}\)

\(A=\frac{6}{7}\)

11 tháng 7 2018

\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)

\(A=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+\frac{2}{80}+\frac{2}{120}+\frac{2}{168}\)

\(A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)

\(A=\frac{1}{2}-\frac{1}{14}\)

\(A=\frac{3}{7}\)

_Chúc bạn học tốt_

9 tháng 2 2018

\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)

\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)

\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)

\(B=\frac{3}{4}\)

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)

\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)

\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)

=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)

\(A=\frac{2}{3}-\frac{1}{192}\)

\(A=\frac{127}{192}\)

\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)

      \(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)

      \(C=\frac{1990.997}{1994.995}\)

      \(C=\frac{995.2+997}{997.2+995}=1\)

9 tháng 2 2018

\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)

\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)

17 tháng 4 2017

A = \(\frac{24}{48}\)\(\frac{12}{48}\)\(\frac{8}{48}\)\(\frac{2}{48}\)\(\frac{1}{48}\)

A = \(\frac{24+12+8+2+1}{48}\)\(\frac{47}{48}\)

ai tốt bụng thì tk cho mk nha

17 tháng 4 2017

tui nhìn ko có quy luật j cả

14 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{1536}+\frac{1}{3072}\)

\(=\frac{2}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+\frac{1}{12}-\frac{1}{24}+...+\frac{1}{1536}-\frac{1}{3072}\)

\(=\frac{2}{3}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)+\left(\frac{1}{12}-\frac{1}{12}\right)+...+\left(\frac{1}{1536}-\frac{1}{1536}\right)-\frac{1}{3072}\)

\(=\frac{2}{3}-\frac{1}{3072}\)

\(=\frac{2047}{3072}\)

14 tháng 4 2019

 Mình cũng ra đáp số 2047/3072

16 tháng 8 2016

\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+...+\frac{1}{4900}\)

\(=\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2450}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{50}\right)\)

\(=\frac{1}{2}.\frac{49}{50}=\frac{49}{100}\)

19 tháng 5 2020

A=\(\frac{3}{7}\)

CÒN CÁCH LÀM ĐANG CHƯA BIẾT

19 tháng 5 2020

Trả lời:

\(A=\frac{3}{7}\)

Hmm chứ ko phải là cứ cộng hết vào là đc ạ hay phải tính nhanh?

:p