K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

19 tháng 4 2015

1.

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.............+\frac{1}{99.101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\)

= 1 - \(\frac{1}{101}\)

\(\frac{100}{101}\)

22 tháng 5 2016

\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)

\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{99.101}\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{98}{303}\)

\(A=\frac{49}{303}\)

22 tháng 5 2016

A= \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)

2A=\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)

2A=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

2A=\(\frac{1}{3}-\frac{1}{101}\)

2A=\(\frac{98}{303}\)

A=\(\frac{98}{303}.\frac{1}{2}\)

A=\(\frac{49}{303}\)

Chúc bạn học tốt!

27 tháng 6 2017

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+....+\frac{1}{9999}\)

=\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{99.101}\)

=\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

=\(1-\frac{1}{101}=\frac{100}{101}\)

27 tháng 6 2017

tích trước đi đã!!!!!!!!!

25 tháng 7 2017

bạn ơi tách ra thừa số chung rồi làm như bình thường nha 

9 tháng 4 2018

1, A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)\)

     =4-\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)

     = 4-\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)\)

    =4-\(\left(1-\frac{1}{9}\right)\)

     = 4-\(\frac{8}{9}\)

      = \(\frac{7}{9}\)

15 tháng 6 2017

Tính 

a) 

\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)

\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)

b) 

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)

15 tháng 6 2017

đờ mờ sao mày ra đề ác thế