Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)
n=\(\frac{2}{3}\times\frac{98}{99}\)
n=\(\frac{196}{297}\)
Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé.
\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)
\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)
\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)
\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)
\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)
\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)
Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)
\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)
\(2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)\)
\(\Rightarrow S=2-\frac{1}{2^{2018}}+1-1+\frac{1}{2}-\frac{1}{2}+.....+\frac{1}{2^{2017}}-\frac{1}{2^{2017}}=2-\frac{1}{2^{2018}}\)\(=\frac{2^{2019}-1}{2^{2018}}\)
Ta có: \(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)
\(\Rightarrow P=\left(1+\frac{1}{49}\right)+\left(1+\frac{2}{48}\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+1\)
\(\Rightarrow P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)
\(\Rightarrow P=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}}{50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)}=\frac{1}{50}\)
Vậy \(\frac{S}{P}=\frac{1}{50}\)
S=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{18^2}\)+\(\frac{1}{19^2}\)
S<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{17.18}\)+\(\frac{1}{18.19}\)
S<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\)+\(\frac{1}{18}\)-\(\frac{1}{19}\)
S<1-\(\frac{1}{19}\)
\(\Rightarrow\)S<\(\frac{18}{18}\)
\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)
\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)
=\(\frac{53}{8}:\frac{1}{4}\)
\(=\frac{53}{2}\)
a)30/60,-40/60,45/60,48/60
45/60>30/60>-40/60>-48/60
=3/4>1/2>-2/3>-4/5
Tìm x biết:
\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)
\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)
\(\frac{x}{3}=\frac{5}{6}\)
\(x=\frac{5}{6}.3\)
\(x=\frac{5}{2}\)
Vậy \(x=\frac{5}{2}\)
\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)
\(\frac{13}{23}+x=\frac{199}{230}\)
\(x=\frac{199}{230}-\frac{13}{23}\)
\(x=\frac{3}{10}\)
Vậy \(x=\frac{3}{10}\)
Bài 2: tính
\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)
\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{5}-\frac{1}{11}\)
\(=\frac{6}{55}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Bài 2:
1/30+1/42+1/56+1/72+1/90+1/110
=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11
=1/5-1/11=6/55
b)1/1.2+1/2.3+...+1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50
=49/50
bài 1 :
\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1
\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1
\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2
chúc bạn học tốt !!!
Đặt \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{18}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{18}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{19}}\)
Đặt S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)
=> 2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{18}}\)
2S - S = ( \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{18}}\)) - ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\))
S = 1 - \(\frac{1}{2^{19}}\)