\(\frac{1}{2}\)+ \(\frac{1}{2^2}\)\(\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

Đặt \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{18}}\)

\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{18}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)\)

\(\Rightarrow S=1-\frac{1}{2^{19}}\)

28 tháng 4 2019

Đặt S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\)

=> 2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{18}}\)

2S - S = ( \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{18}}\)) - ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{19}}\))

S = 1 - \(\frac{1}{2^{19}}\)

22 tháng 6 2017

n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\times\frac{98}{99}\)

n=\(\frac{196}{297}\)

22 tháng 6 2017

Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé. 

\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)

\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)

\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)

Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)

16 tháng 4 2018

\(2S=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)

\(2S-S=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)\)

\(\Rightarrow S=2-\frac{1}{2^{2018}}+1-1+\frac{1}{2}-\frac{1}{2}+.....+\frac{1}{2^{2017}}-\frac{1}{2^{2017}}=2-\frac{1}{2^{2018}}\)\(=\frac{2^{2019}-1}{2^{2018}}\)

16 tháng 4 2018

bảo bình chứng tỏ S <1 nhé

17 tháng 2 2017

Ta có: \(P=\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

\(\Rightarrow P=\left(1+\frac{1}{49}\right)+\left(1+\frac{2}{48}\right)+\left(1+\frac{3}{47}\right)+...+\left(1+\frac{48}{2}\right)+1\)

\(\Rightarrow P=\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

\(\Rightarrow P=50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(\Rightarrow\frac{S}{P}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}}{50\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)}=\frac{1}{50}\)

Vậy \(\frac{S}{P}=\frac{1}{50}\)

14 tháng 5 2019

S=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+\(\frac{1}{5^2}\)+...+\(\frac{1}{18^2}\)+\(\frac{1}{19^2}\)

S<\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{17.18}\)+\(\frac{1}{18.19}\)

S<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+...+\(\frac{1}{17}\)-\(\frac{1}{18}\)+\(\frac{1}{18}\)-\(\frac{1}{19}\)

S<1-\(\frac{1}{19}\)

\(\Rightarrow\)S<\(\frac{18}{18}\)

14 tháng 5 2019

Mk viết nhầm nhé,S<\(\frac{18}{19}\)

24 tháng 4 2017

\(\left(6+\left(\frac{1}{2}\right)^3-\left|-\frac{1}{2}\right|\right):\frac{3}{12}\)

\(=\left(6+\frac{1}{8}+\frac{1}{2}\right):\frac{1}{4}\)

=\(\frac{53}{8}:\frac{1}{4}\)

\(=\frac{53}{2}\)

24 tháng 4 2017

a)30/60,-40/60,45/60,48/60

45/60>30/60>-40/60>-48/60

=3/4>1/2>-2/3>-4/5

22 tháng 6 2017

câu M hình như đề sai rồi bn ơi

22 tháng 6 2017

câu m bị sai đề ở chỗ 2 phần 99 nhân 100 ý

6 tháng 4 2018

Tìm x biết:

\(\frac{x}{3}-\frac{3}{4}=\frac{1}{12}\)

\(\frac{x}{3}=\frac{1}{12}+\frac{3}{4}\)

\(\frac{x}{3}=\frac{5}{6}\)

\(x=\frac{5}{6}.3\)

\(x=\frac{5}{2}\)

Vậy \(x=\frac{5}{2}\)

\(\frac{29}{30}-\left(\frac{13}{23}+x\right)=\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{29}{30}-\frac{7}{69}\)

\(\frac{13}{23}+x=\frac{199}{230}\)

\(x=\frac{199}{230}-\frac{13}{23}\)

\(x=\frac{3}{10}\)

Vậy \(x=\frac{3}{10}\)

Bài 2: tính

\(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{5}-\frac{1}{11}\)

\(=\frac{6}{55}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{49}{50}\)

6 tháng 4 2018

Bài 2:

1/30+1/42+1/56+1/72+1/90+1/110

=1/5.6+1/6.7+1/7.8+1/8.9+1/9.10+1/10.11

=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11

=1/5-1/11=6/55

b)1/1.2+1/2.3+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50

=49/50

29 tháng 4 2020

bài 1 :

\(\frac{2}{3}\)+\(\frac{1}{3}\)=\(\frac{3}{3}\)=1

\(\frac{3}{4}\)+\(\frac{2}{4}\)+\(\frac{1}{4}\)=\(\frac{4}{4}\)=1

\(\frac{4}{5}\)+\(\frac{3}{5}\)+\(\frac{2}{5}\)+\(\frac{1}{5}\)=\(\frac{10}{5}\)= 2 

chúc bạn học tốt !!!

29 tháng 4 2020

nếu có thì kết bạn rrrrrtt3448Y ok