\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{99^2}+\frac{1}{100^2}\)

TÍNH GIÚP MÌ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2018

đơn giải như đang giỡn ^ ^

3 tháng 5 2017

H = 2012 - 1 - ( \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+99}\))
   = 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{\left(99+1\right).\left[\left(99-1\right):1+1\right]:2}\)
   = 2011 - ( \(\frac{1}{3}+\frac{1}{6}+...+\frac{1}{4950}\))
   = 2011 - 2.( \(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\))
   = 2011 - 2.(\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
   = 2011 - 2.( \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\))
   = 2011 - 2.(\(\frac{1}{2}-\frac{1}{100}\)) = 2011 - 2.\(\frac{49}{100}\)= 2011 - \(\frac{49}{50}\)\(\frac{100501}{50}\)

3 tháng 5 2017

\(H=2012-\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+99}\right)\)

\(=2012-\left(1+\frac{1}{2\left(2+1\right):2}+\frac{1}{3\left(3+1\right):2}+...+\frac{1}{99\left(99+1\right):2}\right)\)

\(=2012-\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\right)\)

\(=2012-2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{2}{99.100}\right)\)

\(=2012-2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=2012-2\left(1-\frac{1}{100}\right)\)

\(=2012-2\cdot\frac{99}{100}\)

\(=2012-\frac{99}{50}\)

\(=\frac{100501}{50}\)

1 tháng 6 2018

a/ \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+........+\frac{99}{100!}\)

\(\Leftrightarrow A=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+......+\frac{100-1}{100!}\)

\(\Leftrightarrow A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+.....+\frac{100}{100!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+....+\frac{1}{99!}-\frac{1}{100!}\)

\(\Leftrightarrow A=1-\frac{1}{100!}\)

b/ \(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{9900}\)

6 tháng 5 2017

Ta có   \(A=\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+\frac{2}{5}+....+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+......+\frac{99}{100}}\)

\(A=\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+....+\frac{1}{100}\right)}{\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)}\)

\(A=\frac{2\left[100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+.....+\frac{1}{100}\right)\right]}{100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{100}\right)}\)

\(\Rightarrow A=2\)

6 tháng 5 2017

Ủa sao bạn ra được \(\frac{200-2\left(\frac{3}{2}+\frac{1}{3}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)  số 2 ở 200 đâu ra vậy ! và \(\frac{3}{2}\)nữa !

15 tháng 4 2017

1/

\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)

Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}

n-31-12-24-4
n42517-1

Vậy...

15 tháng 4 2017

câu 2 dễ ẹt

13 tháng 5 2020

a) \(A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)

\(5A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2018}}\)

\(4A=5A-A=\frac{1}{5}-\frac{1}{5^{2019}}\)

\(A=\frac{1}{20}-\frac{1}{4.5^{2019}}< \frac{1}{20}< \frac{1}{2}\)

b)  Đề có sai không mà đằng cuối lại là \(\frac{1}{4^2}\)lặp lại lần nữa.
c) \(C=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

\(2C=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

\(3C=2C+C=1-\frac{1}{64}< 1\)

\(C< \frac{1}{3}\)

d) Xem lại đề nữa đi e, nếu trừ hai vế cho \(\frac{1}{3}\)thì vế trái > 0 > vế phải rồi
e)  \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)(10 số hạng)
                                                    \(=\frac{10}{50}=\frac{1}{5}\)

Tương tự: \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{6}\)

\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{7}\)

\(\frac{1}{71}+\frac{1}{72}+...+\frac{1}{80}>\frac{1}{8}\)

\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}>\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\frac{533}{840}>\frac{490}{840}=\frac{7}{12}\)

2 tháng 1 2019

dấu ngoặc ở sau \(\frac{99}{100}\)là sai đó (Tại mình ấn nhầm), đáng nhẽ ra nó ở sau \(\frac{1}{100}\),mọi ng lưu ý nha !