Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(I=\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\frac{5.2^{30}.3^{27}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{5.2^{30}.3^{27}-3^{30}.2^{29}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\frac{2^{29}.3^{27}.\left(5.2-3^3\right)}{2^{28}.3^{18}.\left(5.3-2.7\right)}\)
\(=\frac{2^{29}.3^{27}.-17}{2^{18}.3^{18}}\)
\(=\frac{2^9.3^9.-17}{1}\)
Ta có \(H=\frac{\left(3.4.2^{16}\right)}{11.2^{13}.4^{11}-16^9}\)
\(=\frac{3.4.2^{16}}{11.2^{13}.2^{22}-2^{36}}\)
\(=\frac{3.2^{18}}{11.2^{35}-2^{36}}\)
\(=\frac{3.2^{18}}{2^{35}.\left(11-2\right)}\)
\(=\frac{3.2^{18}}{2^{35}.3^2}\)
\(=\frac{1}{2^{17}.3}\)
\(A=\frac{15.3^{11}+4.27^1}{9^7}\)
\(\Rightarrow A=\frac{3.5.3^{11}+4.3^{3^1}}{\left(3^2\right)^7}\)
\(\Rightarrow A=\frac{3^{12}.5+4.3^3}{3^{14}}\)
\(\Rightarrow A=\frac{3^3.\left(5.3^8+4.3^3\right)}{3^{14}}\)
\(\Rightarrow A=\frac{32805+4}{177147}\)
\(\Rightarrow A=\frac{32809}{177147}\)
\(B=\frac{18^6\cdot2^{12}\cdot4^3\cdot9^3}{16^3\cdot6^9\cdot27^3}\)
\(=>B=\frac{\left(3^2\cdot2\right)^6\cdot2^{12}\cdot\left(2^2\right)^3\cdot\left(3^2\right)^3}{\left(2^4\right)^3\cdot\left(2\cdot3\right)^9\cdot\left(3^3\right)^3}\)
\(=>B=\frac{3^{12}\cdot2^6\cdot2^{12}\cdot2^6\cdot3^6}{2^{12}\cdot2^9\cdot3^9\cdot3^9}\)
\(=>B=\frac{\left(3^{12}\cdot3^6\right)\cdot\left(2^6\cdot2^{12}\cdot2^6\right)}{\left(2^{12}\cdot2^9\right)\cdot\left(3^9\cdot3^9\right)}\)
\(=>B=\frac{3^{18}\cdot2^{24}}{2^{21}\cdot3^{18}}\)
\(=>B=\frac{2^{24}}{2^{21}}\)
\(=>B=2^{24-21}\)
\(=>B=2^3\)
\(=>B=8\)
Câu 1 : \(1,321338308x10^{-4}\)
Câu 2 : \(1316,572106\)
Câu 3 : \(1,641302619x10^{-13}\)
Ủng hộ nhé,tớ đang âm.
c) \(\frac{\left(3\cdot4\cdot2^{16}\right)}{11\cdot2^{13}\cdot4^{11}-16^9}=\frac{\left(3\cdot2^2\cdot2^{16}\right)^2}{11\cdot2^{13}\cdot2^{22}-2^{36}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{11\cdot2^{35}-2^{26}}\)
\(=\frac{9\cdot2^4\cdot2^{32}2^{ }}{\left(11-2\right)\cdot2^{35}}\)
\(=\frac{9\cdot2^4\cdot2^{32}}{9\cdot2^{35}}\)
\(=\frac{9\cdot1\cdot2^{32}}{9\cdot2^{31}}=\frac{2^{32}}{2^{31}}=2\)