Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 \(F=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{7.8.9}+\frac{1}{8.9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{7.8}-\frac{1}{8.9}+\frac{1}{8.9}-\frac{1}{9.10}\)
\(2F=\frac{1}{1.2}-\frac{1}{9.10}\)\(=\frac{44}{90}\)
\(F=\frac{11}{45}\)
Vậy \(F=\frac{11}{45}\)
Bài 2 :
\(A=\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\Rightarrow\)\(\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)
\(\Rightarrow\)\(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}< B< \frac{1}{2.3}+..+\frac{1}{8.9}\)
\(\Rightarrow\)\(\frac{1}{3}-\frac{1}{10}< B< \frac{1}{2}-\frac{1}{9}\)
\(\Rightarrow\)\(\frac{7}{30}\)\(< \frac{7}{18}\left(đpcm\right)\)
Hết nha bn.Mk ik ngủ.Chúc bạn học tốt
1/2x3x4 + 1/3x4x5 + 1/4x5x6 + 1/5x6x7 + ..... + 1/8x9x10
= { 2/2x3x4 + 2/3x4x5 + 2/4x5x6 + .... + 2/8x9x10 } : 2
= { 4-2/2x3x4 + 5-3/3x4x5 + 6-4/4x5x6 + .... + 10-8/8x9x10 } : 2
= { 4/2x3x4 - 2/2x3x4 + 5/3x4x5 - 3/3x4x5 + ... + 10/8x9x10 - 8/8x9x10 } : 2
= { 1/2x3 - 1/3x4 + 1/3x4 - 1/4x5 + ... + 1/8x9 - 1/9x10 } : 2
= { 1/2x3 - 1/9x10 } :2
= { 1/6 - 1/90 } : 2
= 14/90 : 2
= 7/90
Theo đầu bài ta có:
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)\cdot x=\frac{23}{45}\)
\(\Rightarrow\frac{\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}}{2}\cdot x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1\cdot2}-\frac{1}{9\cdot10}\right)\cdot x=\frac{46}{45}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{90}\right)\cdot x=\frac{46}{45}\)
\(\Rightarrow\frac{22}{45}\cdot x=\frac{46}{45}\)
\(\Rightarrow x=\frac{23}{11}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(\Rightarrow\frac{11}{45}.x=\frac{23}{45}\)
\(\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
Ủng hộ mk nha !!! ^_^
\(\left(\frac{1}{1}-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-.........+\frac{1}{8}-\frac{1}{9}-\frac{1}{10}\right)\).x = \(\frac{22}{45}\)
\(\left(1-\frac{1}{10}\right).x=\frac{22}{45}\)
\(\frac{9}{10}.x=\frac{22}{45}\)
\(x=\frac{22}{45}:\frac{9}{10}\)
\(x=\frac{44}{81}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left[\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)\right]x=\frac{23}{45}\)
\(\Leftrightarrow\left(\frac{1}{2}.\frac{44}{90}\right)x=\frac{23}{45}\)
\(\Leftrightarrow\frac{11}{45}x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{8.9.10}\right)x=\frac{23}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{48}{45}\)
\(\Rightarrow\frac{22}{45}x=\frac{48}{45}\)
\(\Rightarrow x=\frac{24}{11}\)
Vậy...
Có \(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)+x=\frac{23}{45}\)
Cho \(A=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\)
Ta có công thức sau: \(\frac{1}{n\cdot\left(n+1\right)}+\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}=\frac{2}{n\cdot\left(n+1\right)\left(n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\\ =\frac{1}{1\cdot2}-\frac{1}{9\cdot10}=\frac{22}{45}\)
\(\Rightarrow A=\frac{22}{45}:2=\frac{11}{45}\)
Thay vào phép tính trên ta được:
\(\frac{11}{45}\cdot x=\frac{23}{45}\\ x=\frac{23}{45}:\frac{11}{45}\\ x=\frac{23}{11}\)
Vậy \(x=\frac{23}{11}\)
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+...+\frac{2}{8\cdot9\cdot10}\right)\right]x=\frac{23}{45}\)
=>\(\left[\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9\cdot10}\right)\right]x=\frac{23}{45}\)
=> \(\left[\frac{1}{2}\cdot\frac{22}{45}\right]x=\frac{23}{45}\)
=> \(\frac{11}{45}x=\frac{23}{45}\)
=> \(x=\frac{23}{45}:\frac{11}{45}=\frac{23}{45}\cdot\frac{45}{11}=\frac{23}{11}\)
Vậy x = 23/11
Ez :))
\(pt\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{8.9}-\frac{1}{9.10}\right)x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{22}{45}.x=\frac{22}{45}\)
\(\Leftrightarrow\frac{1}{2}x=1\)
\(\Rightarrow x=2\)
Ta có : 1/1 -1/2 -1/3 +1/2-1/3-1/4+........+1/8-1/9-1/10
Ta gạch các phân số ở giữa còn lại 1/1-1/10=9/10
Giải :
\(=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)
\(=\frac{1}{2}-\frac{1}{9\cdot10}=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{45}{90}-\frac{1}{90}=\frac{44}{90}=\frac{22}{45}\)
\(@Cothanhkhe-hoqchac\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{8.9.10}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+..........+\frac{1}{8.9}-\frac{1}{9.10}\)
\(=\frac{1}{1.2}-\frac{1}{9.10}\)
\(=\frac{1}{2}-\frac{1}{90}\)
\(=\frac{45}{90}-\frac{1}{90}\)
\(=\frac{44}{90}\)
\(=\frac{22}{45}\)
22/45