Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10^4.81-16.15^2}{4^4.675}=\frac{\left(2.5\right)^4.3^4-2^4\left(3.5\right)^2}{2^8.5^2.3^3}=\frac{2^4.3^2.5^2\left(5^2.3^2-1\right)}{2^8.5^2.3^3}=\frac{255-1}{16.3}=\frac{14}{3}\)
104.81 - 16,152 / 44,675 = 9739,9875/256,675
chắc em làm sai , vì em mới học lớp 5 , tỷ lệ đúng chắc chỉ là 1%
\(\frac{10^4.81-16.15^2}{4^4.675}=\frac{\left(2.5\right)^4.3^4-2^4\left(3.5\right)^2}{2^8.5^2.3^3}=\frac{2^4.3^2.5^2\left(5^2.3^2-1\right)}{2^8.5^2.3^3}=\frac{255-1}{16.3}=\frac{14}{3}\)
$\frac{10^4.81-16.15^2}{4^4.675}=\frac{10^4.3^4-4^2.15^2}{4^4.5^4}=\frac{30^4-60^2}{20^4}=\frac{900^2-60^2}{400^2}=\frac{20^2\left(45^2-3^2\right)}{20^2.2^2}=\frac{2016}{4}=504$104.81−16.15244.675 =104.34−42.15244.54 =304−602204 =9002−6024002 =202(452−32)202.22 =20164 =504
\(A=\frac{10^4\cdot81-16\cdot15^2}{4^4\cdot675}\)
\(=\frac{2^4\cdot5^4\cdot3^3-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}\)
\(=\frac{2^4\cdot5^2\cdot3\left(5^2\cdot3-3\right)}{2^8\cdot3^3\cdot5^2}\)
\(=\frac{5^2\cdot3-3}{2^4\cdot3^2}\)
\(=\frac{3\cdot\left(5^2-1\right)}{2^4\cdot3^2}=\frac{24}{48}=\frac{1}{2}\)
\(=\dfrac{2^4\cdot5^4\cdot3^4-2^4\cdot3^2\cdot5^2}{2^8\cdot3^3\cdot5^2}=\dfrac{2^4\cdot3^2\cdot5^2\left(5^2\cdot3^2-1\right)}{2^8\cdot3^3\cdot5^2}\)
\(=\dfrac{1}{16}\cdot\dfrac{1}{3}\cdot\dfrac{224}{1}=\dfrac{224}{48}=\dfrac{14}{3}\)
\(\dfrac{10^4.81-16.15^2}{4^4.675}\)
\(=\dfrac{2^4.5^4.9^2-2^4.3^2.5^2}{2^8.5^4}\)
\(=\dfrac{1.25.9^2-1.3^2.1}{1.1}=1.25.9^2-1.3^2.1\)
\(=1899\)
Chúc bạn học tốt
a)\(\left[\frac{3}{7}\cdot\frac{4}{15}+\frac{1}{3}\cdot\left(9^{15}\right)\right]^0\cdot\frac{1}{3}\cdot\frac{6^8}{12^4}\)
\(=1\cdot\frac{1}{3}\cdot\frac{6^4\cdot6^4}{12^4}=\frac{1}{3}\cdot\frac{36^4}{12^4}=\frac{1}{3}\cdot81=27\)
\(\frac{x-1}{2}=\frac{y-2}{3}\Rightarrow\frac{3\left(x-1\right)}{2}=y-2\Rightarrow y=\frac{3\left(x-1\right)}{2}+2=\frac{3\left(x-1\right)+4}{2}\)(1)
\(\frac{x-1}{2}=\frac{z-3}{4}\Rightarrow\frac{4\left(x-1\right)}{2}=z-3\Rightarrow z=\frac{4\left(x-1\right)}{2}+3=\frac{4\left(x-1\right)+6}{2}\)(2)
Từ (1) và (2) => 2x+3y-z=\(2x+3\left(\frac{3\left(x-1\right)+4}{2}\right)-\frac{4\left(x-1\right)+6}{2}=50\)
\(\Rightarrow\frac{4x}{2}+\frac{9\left(x-1\right)+12}{2}-\frac{4\left(x-1\right)+6}{2}=50\)
\(\Rightarrow\frac{4x+9x-9+12-4x+4-6}{2}=50\)
\(\Rightarrow9x+1=100\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=11\)
Vì \(y=\frac{3\left(x-1\right)+4}{2}=\frac{3\left(11-1\right)+4}{2}=\frac{34}{2}=17\Leftrightarrow y=17\)
Vì \(z=\frac{4\left(x-1\right)+6}{2}=\frac{4\left(11-1\right)+6}{2}+\frac{46}{2}=23\Leftrightarrow z=23\)
Vậy x=11
y=17
z=23
\(\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\)
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng t/c dãy tỉ số = nhau
\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\\\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{cases}}\)
\(=\frac{14}{3}nha!\)