Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
\(A=\frac{2x+1}{x^2+2}\)
Ta có: \(\hept{\begin{cases}2x+1\ge1\\x^2+2\ge2\end{cases}}\)
Để 2x+ 1 nhỏ nhất => 2x+ 1=1
x2+ 2 nhỏ nhất => x2+ 2= 2
\(\Rightarrow A=\frac{0+1}{0+1}=\frac{1}{2}=0,5\)
Vậy GTNN của A= 0,5
Ax^2+2A=2x+1
\(\Leftrightarrow Ax^2-2x+2A-1=1\)(*) A=0 <=>-2x-1=0=> luon co nghiem x
\(A\ne0\)(*) co nghiem can
delta(x)=1-A.(2a-1)>=0
\(\Leftrightarrow1-2a^2+a\ge0\Leftrightarrow2a^2-a-1\le0\Leftrightarrow\left(a-1\right)\left(a+\frac{1}{2}\right)\le0\)
\(-\frac{1}{2}\le A\le1\)
\(2-25x^2=0\)
\(\Rightarrow25x^2=2\)
\(\Rightarrow x^2=\frac{2}{25}\)
\(\Rightarrow x=\frac{\sqrt{2}}{5}\)
tíc mình nha
\(2-25x^2=0\)
\(\Leftrightarrow\left(\sqrt{2}-5x\right)\left(\sqrt{2}+5x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{2}-5x=0\\\sqrt{2}+5x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
Vậy: \(x=\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=-\frac{\sqrt{2}}{5}\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
P(x^2+x+1)=x^2-x+1
=>Px^2+Px+P-x^2+x-1=0
=>(Px^2-x^2)+(Px+x)+(P-1)=0
=>x^2(P-1)+x(P+1)+(P-1)=0 (1)
coi đây là 1 pt bậc 2 ẩn x ,để P tổn tại max min thì phải có x thoả mãn max,min đó,tức là (1) có nghiệm
Xét delta = (P+1)^2-4(P-1)^2 >/ 0 =>P^2+2P+1-4(P^2-2P+1)=P^2+2P+1-4P^2+8P-4=-3P^2+10P-3
=(P-3)(1-3P) >/ 0 => 1/3<=P<=3 => minP=1/3,maxP=3