K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2018

Ta có \(7a^2-15ab+2b^2=0\Leftrightarrow7a^2-14ab-ab+2b^2=0\Leftrightarrow7a\left(a-2b\right)-b\left(a-2b\right)=0\Leftrightarrow\left(a-2b\right)\left(7a-b\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}7a-b=0\\a-2b=0\end{matrix}\right.\)(*)

Vì a-2b\(\ne0\)(Để E xác định)

Vậy (*)\(\Leftrightarrow7a-b=0\Leftrightarrow7a=b\)

Thay vào E ta có \(E=\dfrac{a-7a}{2a+7a}-\dfrac{3a-7a}{a-14a}=\dfrac{-6a}{9a}-\dfrac{-4a}{-13a}=\dfrac{-6}{9}-\dfrac{4}{13}=-\dfrac{38}{39}\)

Trần Trung NguyênAki TsukiThiên HànNguyễn Việt LâmRibi Nkok

NgokBonkingNguyễn Thanh HằngDƯƠNG PHAN KHÁNH DƯƠNG

giúp mk vs

17 tháng 9 2018

Hình như sai đề :

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

\(\Leftrightarrow\dfrac{bc}{abc}+\dfrac{ac}{abc}+\dfrac{ab}{abc}=0\)

\(\Leftrightarrow\dfrac{ab+ac+bc}{abc}=0\)

\(\Leftrightarrow ab+ac+bc=0\) ( do \(a;b;c\ne0\) ) ( 1 )

Từ ( 1 ) \(\Rightarrow ab+bc=-ac\)

\(\Rightarrow\left(ab+bc\right)^2=\left[-\left(ac\right)\right]^2\)

\(\Rightarrow a^2b^2+b^2c^2+2ab^2c=a^2c^2\) ( * )

CMTT , ta được : \(\left\{{}\begin{matrix}b^2c^2+c^2a^2+2bc^2a=a^2b^2\\c^2a^2+a^2b^2+2a^2cb=b^2c^2\end{matrix}\right.\) ( *' )

Thay ( * ) và ( * ') vào E , ta được :

\(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-\left(a^2b^2+b^2c^2+2b^2ac\right)}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-\left(b^2c^2+c^2a^2+2bc^2a\right)}\)

\(+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-\left(c^2a^2+a^2b^2+2a^2cb\right)}\)

\(=\dfrac{a^2b^2c^2}{-2b^2ac}+\dfrac{a^2b^2c^2}{-2c^2ab}+\dfrac{a^2b^2c^2}{-2a^2cb}\)

\(=\dfrac{-ac}{2}+\dfrac{-ab}{2}+\dfrac{-bc}{2}\)

\(=\dfrac{-\left(ac+ab+bc\right)}{2}\)

\(=\dfrac{0}{2}=0\)

Vậy \(E=0\)

25 tháng 5 2018

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)

=> bc+ac+ab=0

ta có

\(bc+ac=-ab\)

<=> \(\left(bc+ac\right)^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2+2abc^2=a^2b^2\)

<=> \(b^2c^2+a^2c^2-a^2b^2=-2abc^2\)

tương tự

\(a^2b^2+b^2c^2-c^2a^2=-2ab^2c\)

\(c^2a^2+a^2b^2-b^2c^2=-2a^2bc\)

thay vào E ta đc

\(E=\dfrac{-a^2b^2c^2}{2ab^2c}-\dfrac{a^2b^2c^2}{2abc^2}-\dfrac{a^2b^2c^2}{2a^2bc}\)

=\(-\dfrac{ac}{2}-\dfrac{ab}{2}-\dfrac{bc}{2}=\dfrac{-\left(ac+ab+bc\right)}{2}=0\) (vì ac+bc+ab=0 cmt)

14 tháng 1 2022
Cho sao nha nhưng tui ko bít làm
3 tháng 8 2018

de dung ko vay ban

3 tháng 12 2018

Ta có:

\(Q=\dfrac{2a-b}{3a-b}+\dfrac{5b-a}{3a+b}\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}+\dfrac{\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}\)

\(Q=\dfrac{3a^2+15ab-6b^2}{9a^2-b^2}\)

Ta lại có:

\(6a^2-15ab+5b^2=0\)

\(\Rightarrow3a^2+15ab-6b^2=9a^2-b^2\left(1\right)\)

Thay (1) vào Q

=> Q = 1

NV
26 tháng 1 2019

Ta có \(6a^2-15ab+5b^2=0\Leftrightarrow15ab=6a^2+5b^2\)

\(Q=\dfrac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{9a^2-b^2}\)

\(Q=\dfrac{3a^2+15ab-6b^2}{9a^2-b^2}=\dfrac{3a^2+6a^2+5b^2-6b^2}{9a^2-b^2}\)

\(Q=\dfrac{9a^2-b^2}{9a^2-b^2}=1\)

2a-b=5 nên b=2a-5

\(A=\dfrac{7a-2b}{3a+10}-\dfrac{7b-4a}{15b-30}\)

\(=\dfrac{7a-2\left(2a-5\right)}{3a+10}-\dfrac{7\left(2a-5\right)-4a}{15\left(2a-5\right)-30}\)

\(=\dfrac{7a-4a+10}{3a+10}-\dfrac{14a-35-4a}{30a-75-30}\)

\(=1-\dfrac{5\left(2a-7\right)}{15\left(2a-7\right)}=1-\dfrac{1}{3}=\dfrac{2}{3}\)

AH
Akai Haruma
Giáo viên
11 tháng 12 2018

Lời giải:

\(2a-b=5\Rightarrow b=2a-5\Rightarrow 2b=4a-10\)

\(\Rightarrow 7a-2b=7a-(4a-10)=3a+10\)

\(\Rightarrow \frac{7a-2b}{3a+10}=\frac{3a+10}{3a+10}=1\)

Lại có:

\(2a-b=5\Rightarrow 2a=b+5\Rightarrow 4a=2b+10\)

\(\Rightarrow 7b-4a=7b-(2b+10)=5b-10\)

\(\Rightarrow \frac{7b-4a}{15b-30}=\frac{5b-10}{15b-30}=\frac{5b-10}{3(5b-10)}=\frac{1}{3}\)

Vậy: \(A=1-\frac{1}{3}=\frac{2}{3}\)