Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Diện tích S của tam giác ABC là: \(S = \frac{1}{2}a.{h_a}\)
b) Xét tam giác vuông AHC ta có: \(\sin C = \frac{{AH}}{{AC}} = \frac{{{h_a}}}{b}\)
\( \Rightarrow {h_a} = b.\sin C\)
c) Thay \({h_a} = b.\sin C\) vào công thức diện tích, ta được: \(S = \frac{1}{2}ab\sin C\)
d) Theo định lí sin ta có: \(\frac{c}{{\sin C}} = 2R \Rightarrow \sin C = \frac{c}{{2R}}\)
Thay vào công thức ở c) ta được: \(S = \frac{1}{2}ab\frac{c}{{2R}} = \frac{{abc}}{{4R}}.\)
Áp dụng định lí cosin trong tam giác ABC ta có:
\({a^2} = {b^2} + {c^2} - 2bc.\cos A\)\( \Rightarrow \cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Mà \(\sin A = \sqrt {1 - {{\cos }^2}A} \).
\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}} \right)}^2}} = \sqrt {\frac{{{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}}}{{{{(2bc)}^2}}}} \)
\( \Leftrightarrow \sin A = \frac{1}{{2bc}}\sqrt {{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}} \)
Đặt \(M = \sqrt {{{(2bc)}^2} - {{({b^2} + {c^2} - {a^2})}^2}} \)
\(\begin{array}{l} \Leftrightarrow M = \sqrt {(2bc + {b^2} + {c^2} - {a^2})(2bc - {b^2} - {c^2} + {a^2})} \\ \Leftrightarrow M = \sqrt {\left[ {{{(b + c)}^2} - {a^2}} \right].\left[ {{a^2} - {{(b - c)}^2}} \right]} \\ \Leftrightarrow M = \sqrt {(b + c - a)(b + c + a)(a - b + c)(a + b - c)} \end{array}\)
Ta có: \(a + b + c = 2p\)\( \Rightarrow \left\{ \begin{array}{l}b + c - a = 2p - 2a = 2(p - a)\\a - b + c = 2p - 2b = 2(p - b)\\a + b - c = 2p - 2c = 2(p - c)\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow M = \sqrt {2(p - a).2p.2(p - b).2(p - c)} \\ \Leftrightarrow M = 4\sqrt {(p - a).p.(p - b).(p - c)} \\ \Rightarrow \sin A = \frac{1}{{2bc}}.4\sqrt {p(p - a)(p - b)(p - c)} \\ \Leftrightarrow \sin A = \frac{2}{{bc}}.\sqrt {p(p - a)(p - b)(p - c)} \end{array}\)
b) Ta có: \(S = \frac{1}{2}bc\sin A\)
Mà \(\sin A = \frac{2}{{bc}}\sqrt {p(p - a)(p - b)(p - c)} \)
\(\begin{array}{l} \Rightarrow S = \frac{1}{2}bc.\left( {\frac{2}{{bc}}\sqrt {p(p - a)(p - b)(p - c)} } \right)\\ \Leftrightarrow S = \sqrt {p(p - a)(p - b)(p - c)} .\end{array}\)
a)
\(A=\left(sin\alpha+cos\alpha\right)^2+\left(sin\alpha-cos\alpha\right)^2\)
\(=1+2sin\alpha cos\alpha+1-2sin\alpha cos\alpha=2\) (không phụ thuộc vào \(\alpha\)).
b)
\(B=sin^4\alpha-cos^4\alpha-2sin^2\alpha+1\)
\(=\left(sin^2\alpha+cos^2\alpha\right)\left(sin^2\alpha-cos^2\alpha\right)-2sin^2\alpha+1\)
\(=sin^2\alpha-cos^2\alpha-2sin^2\alpha+1\)
\(=-sin^2\alpha-cos^2\alpha+1\)
\(=-\left(sin^2\alpha+cos^2\alpha\right)+1=-1+1=0\).
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900