Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐK: $x\geq 2$
PT $\Leftrightarrow \sqrt{(x-2)(x+2)}-3\sqrt{x-2}=0$
$\Leftrightarrow \sqrt{x-2}(\sqrt{x+2}-3)=0$
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=7\end{matrix}\right.\) (thỏa mãn)
Vậy..........
b) ĐK: $x\geq 0$
PT $\Leftrightarrow (\sqrt{x}-3)^2=0$
$\Leftrightarrow \sqrt{x}-3=0$
$\Leftrightarrow x=9$ (thỏa mãn)
c) ĐK: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{x-3}-\frac{1}{2}\sqrt{4(x-3)}=7$
$\Leftrightarrow 3\sqrt{x-3}+\sqrt{x-3}-\sqrt{x-3}=7$
$\Leftrightarrow 3\sqrt{x-3}=7$
$\Leftrightarrow x-3=(\frac{7}{3})^2$
$\Rightarrow x=\frac{76}{9}$
d)
ĐK: $x\geq \frac{-1}{2}$
PT $\Leftrightarrow 3\sqrt{4(2x+1)}-\frac{1}{3}\sqrt{9(2x+1)}-\frac{1}{2}\sqrt{25(2x+1)}+\sqrt{\frac{1}{4}(2x+1)}=6$
$\Leftrightarrow 6\sqrt{2x+1}-\sqrt{2x+1}-\frac{5}{2}\sqrt{2x+1}+\frac{1}{2}\sqrt{2x+1}=6$
$\Leftrightarrow 3\sqrt{2x+1}=6$
$\Leftrightarrow \sqrt{2x+1}=2$
$\Rightarrow x=\frac{3}{2}$ (thỏa mãn)
1: \(=\left(3+\sqrt{3}\right)\cdot\sqrt{12-6\sqrt{3}}\)
\(=\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)=9-3=6\)
2: \(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}=-\sqrt{6}\)
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{19-6\sqrt{2}}\) = \(\dfrac{\sqrt{12-8\sqrt{2}}}{\sqrt{2}}+\sqrt{\left(3\sqrt{2}-1\right)^2}\)
= \(\dfrac{\sqrt{\left(2\sqrt{2}-2\right)^2}}{\sqrt{2}}+\sqrt{\left(3\sqrt{2}-1\right)^2}\) = \(\dfrac{2\sqrt{2}-2}{\sqrt{2}}+3\sqrt{2}-1\)
\(\dfrac{\sqrt{2}\left(2-\sqrt{2}\right)}{\sqrt{2}}+3\sqrt{2}-1\) = \(2-\sqrt{2}+3\sqrt{2}-1\) = \(2\sqrt{2}+1\)
d )Đặt A = \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(\Leftrightarrow A^2=\left(\sqrt{12-3\sqrt{7}}\right)^2-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}+\left(\sqrt{12+3\sqrt{7}}\right)^2\)
\(\Leftrightarrow A^2=12-3\sqrt{7}-2\sqrt{144-63}+12+3\sqrt{7}\)
\(\Leftrightarrow A^2=24-2\sqrt{81}\)
\(\Leftrightarrow A^2=24-18=6\)
=> A = \(\sqrt{6}\)
Vậy \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}=\sqrt{6}\)
c)
\(\sqrt{2}C=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\Rightarrow C=0\)
b)
\(B=3\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\)
\(\Rightarrow\sqrt{2}B=3\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\)
\(=3\left(\sqrt{5}+1+\sqrt{5}-1\right)-\sqrt{5}\left(\sqrt{5}+1-\sqrt{5}+1\right)\)
\(\sqrt{2}B=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\Rightarrow B=2\sqrt{10}\)
C)√3+√5−√3−√5−√2b) (3−√5)√3+√5+(3+√5)√3−√5d) √4−√7−√4+√7+√7e) √6,5+√12+√6,5−√12+2√6mình cần giải gấp ạ
\(D^2=6\Rightarrow \left[\begin{matrix} D=\sqrt{6}\\ D=-\sqrt{6}\end{matrix}\right.\)
Mà $D< 0$ thì đương nhiên $D=-\sqrt{6}$ rồi em.
Em cảm ơn chị rất nhiều!