Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
b)(y-2)^3=y^3-8+12y-6y^2
c)8x^3+y^3=(2x+y)(4x^2+y^2-4xy)
2)
=(xy+2/3)^2
\(\left(x+2y\right)^2-16=\left(x+2y-4\right)\left(x+2y+4\right)\)
\(\left(x-2y\right)^2-4\left(x-2y\right)+4=\left(x-2y-2\right)^2\)
\(\left(a^2+1\right)^2-6\left(a^2+1\right)+9=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2\)
\(\left(x+y\right)^2+\left(x+y\right)x+\frac{1}{4}x^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)^2\)
\(16x^4-9x^2=x^2\left(16x^2-9\right)=x^2\left(4x-4\right)\left(4x+3\right)\)
\(a^2-b^4=\left(a-b^2\right)\left(a+b^2\right)\)
(x + 2y)2 - 16
= (x + 2y)2 - 42
= (x + 2y - 4).(x + 2y + 4)
(x - 2y)2 - 4.(x - 2y) + 4
= (x - 2y)2 - 2.(x - 2y).2 + 22
= (x - 2y - 2)2
(a2 + 1)2 - 6.(a2 + 1) + 9
= (a2 + 1)2 - 2.(a2 + 1).3 + 32
= (a2 + 1 - 3)2
= (a2 - 2)2
(x + y)2 + (x + y).x + 1/4.x2
= (x + y)2 + 2.(x + y).1/2.x + (1/2.x)2
= (x + y + 1/2.x)2
= (3/2.x + y)2
16x4 - 9x2
= (4x2)2 - (3x)2
= (4x2 - 3x).(4x2 + 3x)
a2 - b4
= a2 - (b2)2
= (a - b2).(a + b2)
Câu a : \(\left(x+1\right)\left(x^2-x+1\right)=x^3+1\)
Câu b : \(\left(x^2+x+1\right)\left(x-1\right)=x^3-1\)
Câu c : \(\left(x^2+2x+4\right)\left(x-2\right)=x^3-8\)
Câu d : \(\left(x-2\right)\left(x^2+2x+4\right)=x^3-8\)
Câu e : \(x^2+2x+1=\left(x+1\right)^2\)
Câu f : \(4x^2+8x+4=\left(2x+2\right)^2\)
Chúc bạn học tốt
a: \(\left(x+1\right)^2\)
b: \(\left(x^2+x+1\right)\left(x-1\right)\)
c: \(\left(x^2+2x+4\right)^2\)
d: \(\left(x-2\right)\left(x+2\right)\)
e: \(x^2+2x+1\)
a) 16x2 - ( x2 + 4 )2
= ( 4x )2 - ( x2 + 4 )2
= [ 4x - ( x2 + 4 ) ][ 4x + ( x2 + 4 ) ]
= ( -x2 + 4x - 4 )( x2 + 4x + 4 )
= [ -( x2 - 4x + 4 ) ]( x + 2 )2
= [ -( x - 2 )2 ]( x + 2 )2
b) ( x + y )3 + ( x - y )3
= [ ( x + y ) + ( x - y ) ][ ( x + y )2 - ( x + y )( x - y ) + ( x - y )2 ]
= ( x + y + x - y )[ x2 + 2xy + y2 - ( x2 - y2 ) + x2 - 2xy + y2 ]
= 2x( 2x2 + 2y2 - x2 + y2
= 2x( x2 + 3y2 )
B1:
\(=x^2+2x-5x-10+3\left(x^2-2^2\right)-\left(9x^2-2.3x.\frac{1}{2}+\frac{1}{4}\right)+5x^2\)
\(=-10-12-\frac{1}{4}=-22\frac{1}{4}\)
Bài 1.
( x - 5 )( x + 2 ) + 3( x - 2 )( x + 2 ) - ( 3x - 1/2 )2 + 5x2
= x2 - 3x - 10 + 3( x2 - 4 ) - ( 9x2 - 3x + 1/4 ) + 5x2
= 6x2 -- 3x - 10 + 3x2 - 12 - 9x2 + 3x - 1/4
= -89/4 không phụ thuộc vào biến
=> đpcm
Bài 2 < mình viết luôn nhé >
a) ( x + 2y2 )2 = x2 + 4xy2 + 4y4
b) ( a - 5/2b )2 = a2 - 5ab + 25/4b2
c) ( m + 1/2 )2 = m2 + m + 1/4
d) x2 - 16y4 = ( x + 4y2 )( x - 4y2 )
e) 25a2 - 1/4b2 = ( 5a + 1/2b )( 5a - 1/2b )
a) \(\left(x-2\right)^3-\left(x+4\right)^2\)
\(=x^3-6x^2+12x-8-\left(x^2+8x+16\right)\)
\(=x^3-6x^2+12x-8-x^2-8x-16\)
\(=x^3-7x^2+4x-24\)
b) \(\left(x-3\right)^3+\left(x+3\right)^3\)
\(=x^3-9x^2+27x-27+x^3+9x^2+27x+27\)
\(=2x^3+54x\)
\(=2x\left(x^2+27\right)\)
c) \(\left(x-2\right)^2-\left(x+2\right)^2=\left(x^2-4x+4\right)-\left(x^2+4x+4\right)\)
\(=x^2-4x+4-x^2-4x-4=-8x\)
d) \(\frac{x^2-25}{x+5}=\frac{\left(x-5\right)\left(x+5\right)}{x+5}=x-5\)
e) \(\frac{x^3-6x^2+12x-8}{x-2}=\frac{\left(x-2\right)^3}{x-2}=\left(x-2\right)^2\)
g) \(\frac{x^3-125}{x-5}=\frac{x^3-5^3}{x-5}=\frac{\left(x-5\right)\left(x^2+5x+25\right)}{x-5}=x^2+5x+25\)
Hoàn thiện HĐT ta thu được các đơn thức cần điền vào “…”.
a) x 2 + 4x + 4 = ( x + 2 ) 2 . b) 4 x 2 – 12x + 9 = ( 2 x – 3 ) 2 .
c) 4 x 2 – 12xy + 9 y 2 = ( 2 x – 3 y ) 2 .
Chú ý: phép trừ ta chuyển thành cộng đại số.
d) x − y 2 x + y 2 = x 2 − y 2 4 .