K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Chọn C.

Lập bảng tần số:

Điểm 1 2 3 4 5 6 7 8 9  
Tần số 1 3 3 1 2 5 3 3 3 N = 24

Ta thấy điểm 6 có tần số lớn nhất nên Mo = 6

23 tháng 9 2017

a) ta có :

\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)

hay \(m\left(m^2+m-1\right)\ge0\)

=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)

30 tháng 4 2021

Ta có : \(0< \alpha< \dfrac{\pi}{2}\)

=> \(\sin\alpha>0,\cos\alpha>\text{0},\tan\alpha>\text{0},\cot\alpha>\text{0}\)

a, Ta có : \(\sin\left(\alpha-\pi\right)=-\sin\left(\pi-\alpha\right)=-\left[-\sin\left(\alpha\right)\right]=\sin\alpha\)

=> \(sin\left(\alpha-\pi\right)>\text{0}\)

b, \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)=\cos\left(\pi+\dfrac{\pi}{2}-\alpha\right)=-\cos\left(\dfrac{\pi}{2}-\alpha\right)=-sin\alpha\)

=> \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)< \text{0}\)

 

30 tháng 4 2021

c, \(tan\left(\alpha+\pi\right)=tan\alpha\)

=> \(tan\left(\alpha+\pi\right)>\text{0}\)

d, \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha\)

=> \(cot\left(\alpha+\dfrac{\pi}{2}\right)< \text{0}\)

29 tháng 12 2016

Bài 1a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\sqrt{\left(abc\right)^2}\)

\(=>\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8abc\) ( điều phải chứng minh )

Bài 1b)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho từng cặp ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\left(abc\right)^2}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\) (điều phải chứng minh )

Bài 1c) Ta có

\(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge\left(1+\sqrt[3]{abc}\right)^3\)

\(=>1+a+b\left(1+a\right)\left(1+c\right)\ge1^3+3.1^2.\sqrt[3]{abc}+3.1.\sqrt[3]{\left(abc\right)^2}+\sqrt[3]{\left(abc\right)^3}\)

\(=>\left(1+a+b+ab\right)\left(1+c\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c\left(1+a+b+ab\right)\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>1+a+b+ab+c+ca+bc+abc\ge1+3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}+abc\)

\(=>a+b+c+ab+bc+ca\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\)

Áp dụng bất đẳng thức Cô-si bộ 3 số cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\ab+bc+ac\ge3\sqrt[3]{\left(abc\right)^2}\end{matrix}\right.\)

\(=>a+b+c+ab+bc+ac\ge3\sqrt[3]{abc}+3\sqrt[3]{\left(abc\right)^2}\) (điều phải chứng minh )

29 tháng 12 2016

Bài 2a)

Áp dụng bất đẳng thức Cô-si cho từng cặp ta có

\(\left\{\begin{matrix}\frac{bc}{a}+\frac{ca}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ca}{b}}=2\sqrt{c^2}=2c\\\frac{ca}{b}+\frac{ab}{c}\ge2\sqrt{\frac{ca}{b}.\frac{ab}{c}}=2\sqrt{a^2}=2a\\\frac{bc}{a}+\frac{ab}{c}\ge2\sqrt{\frac{bc}{a}.\frac{ab}{c}}=2\sqrt{b^2}=2b\end{matrix}\right.\)

\(=>2\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(=>\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\) (điều phải chứng minh )

Bài 2b)

Chứng minh BĐT \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Áp dụng BĐT Cô-si cho vế trái ta có

\(\left\{\begin{matrix}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{matrix}\right.\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\sqrt[3]{\frac{abc}{abc}}\)

\(=>\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\) (điều phải chứng minh )

Ta có \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(=>\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}+3\ge\frac{3}{2}+3\)

\(=>\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge\frac{9}{2}\)

\(=>\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

\(=>\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2}\)

\(=>2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

Áp dụng BĐT vừa chứng minh \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(=>\left(b+c+a+c+a+b\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9 \) (Điều phải chứng minh )

NV
9 tháng 6 2020

\(x^2-5x+6\le0\Rightarrow2\le x\le3\)

\(\left|x-m\right|>1\Rightarrow\left[{}\begin{matrix}x-m>1\\x-m< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< x-1\\m>x+1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m< 2\\m>3\end{matrix}\right.\)

\(\Rightarrow\) Để hệ vô nghiệm thì \(2\le m\le3\)

NV
28 tháng 8 2020

3.

\(\left|2x-4\right|< 10\Leftrightarrow-10< 2x-4< 10\)

\(\Leftrightarrow-3< x< 7\)

\(\Rightarrow C=\left(-3;7\right)\)

\(\left|-3x+5\right|>8\Rightarrow\left[{}\begin{matrix}-3x+5>8\\-3x+5< -8\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x< -1\\x>\frac{13}{3}\end{matrix}\right.\) \(\Rightarrow D=\left(-\infty;-1\right)\cup\left(\frac{13}{3};+\infty\right)\)

\(\Rightarrow C\cap D=\left(-3;-1\right)\cap\left(\frac{13}{3};7\right)\)

\(\Rightarrow\left(C\cap\right)D\cup E=\left(-3;7\right)\)

4.

Hình như cái đề chẳng liên quan gì đến đáp án hết :)

NV
28 tháng 8 2020

1.

\(A\cap B\ne\varnothing\Leftrightarrow\left\{{}\begin{matrix}2m-1\le m+2\\2m+3\ge m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\m\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le3\)

2.

\(\frac{5}{\left|2x-1\right|}>2\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\\left|2x-1\right|< \frac{5}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{5}{2}< 2x-1< \frac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{1}{2}\\-\frac{3}{4}< x< \frac{7}{4}\end{matrix}\right.\)

Rất tiếc tập này không thể liệt kê được (có vô số phần tử)

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng? a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC 3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta...
Đọc tiếp

1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?

a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC

3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)\(\overrightarrow{BN}\) ta được

a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)

4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :

a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)

5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:

a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)

8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

a) 2a b) 3a c) \(\frac{a}{2}\) d) a

10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)

a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)

11/Cho lục giác đều ABCDEF tâm O

a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)

12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó

a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)

13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\)\(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)

a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)

0
13 tháng 4 2016

a) Hai điểm đối xứng nhau qua trục hoành thì có hoành độ bằng nhau và tung độ đối nhau.

M0 (x0; y0)=> A(x0;-y0

b) Hai điểm đối xứng với nhau qua trục tung thì có tung độ bằng nhau còn hoành độ thì đối nhau.

M0 (x0; y0) => B(-x0;y0)

c) Hai điểm đối xứng nhau qua gốc O thì các tọa độ tương ứng đối nhau.

M0 (x0; y0) => C(-x0;-y0)

NV
8 tháng 5 2020

\(\Delta_1\) nhận \(\left(2;1\right)\) là 1 vppt; \(\Delta_2\) nhận \(\left(1;m\right)\) là 1 vtpt

a/ Để 2 đường thẳng song song \(\Rightarrow2m=1\Rightarrow m=\frac{1}{2}\)

Khi đó pt \(\Delta_2\) viết lại: \(2x+y+2=0\)

Khoảng cách 2 đường thẳng: \(d=\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}=\frac{\left|-3-2\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\)

b/Với \(m=2\Rightarrow\Delta_2\) nhận \(\left(1;2\right)\) là 1 vtpt

\(cos\left(\Delta_1;\Delta_2\right)=\frac{\left|2.1+1.2\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+2^2}}=\frac{4}{5}\)

\(\Rightarrow sin\left(\Delta_1;\Delta_2\right)=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}\)

c/ Chắc là k/c từ gốc O

\(d\left(O;\Delta_1\right)=\frac{\left|2.0+1.0-3\right|}{\sqrt{2^2+1^2}}=\frac{3}{\sqrt{5}}\)

\(d\left(O;\Delta_2\right)=\frac{\left|1.0+m.0+1\right|}{\sqrt{1+m^2}}=\frac{1}{\sqrt{1+m^2}}\)

\(\Rightarrow\frac{1}{\sqrt{1+m^2}}=\frac{6}{\sqrt{5}}\Leftrightarrow1+m^2=\frac{5}{36}\Leftrightarrow m^2=-\frac{29}{36}< 0\)

Không tồn tại m thỏa mãn

d/ I là điểm nào bạn?

8 tháng 5 2020

Mình nhầm ạ. Đấy là H

NV
26 tháng 2 2020

\(a=-1< 0;\) \(-\frac{b}{2a}=1\in\left[-1;2\right]\)

\(\Rightarrow\) Hàm số đạt GTLN tại \(\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

\(y\left(-1\right)=m-7\) ; \(y\left(2\right)=m-12\)

Do \(m-7>m-12\) \(\forall m\)

\(\Rightarrow\max\limits_{\left[-1;2\right]}y=y\left(-1\right)\Rightarrow m-7=3\Rightarrow m=10\)

Đáp án D

26 tháng 2 2020

cảm ơn rất nhiều ạ