K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2021

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}< =>\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

áp dụng tính chất dãy tỉ số = nhau

\(=>\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=3,5\)

\(=>\dfrac{x}{3}=3.5=>x=10,5\)

\(\dfrac{2y}{8}=3,5=>y=14\)

\(\dfrac{3z}{15}=3,5=>z=17,5\)

11 tháng 8 2021

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}\)

\(\dfrac{35}{10}=\dfrac{x}{3}\Rightarrow x=\dfrac{21}{2}\)

\(\dfrac{35}{10}=\dfrac{y}{4}\Rightarrow y=14\)

-\(\dfrac{35}{10}=\dfrac{z}{5}\Rightarrow z=\dfrac{35}{2}\)

Tick cho mình với.

16 tháng 9 2017

Nhờ các bạn trả lời giúp mik

16 tháng 9 2017

1/ a, Ta có :

\(x-2y+3z=35\)

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{3}=\dfrac{2y}{8}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{3-8+15}=\dfrac{35}{10}=\dfrac{7}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{7}{2}\Leftrightarrow x=\dfrac{21}{2}\\\dfrac{x}{4}=\dfrac{7}{2}\Leftrightarrow y=14\\\dfrac{z}{5}=\dfrac{7}{2}\Leftrightarrow z=\dfrac{35}{2}\end{matrix}\right.\)

Vậy ..

18 tháng 10 2018

a) Giải

\(5x=2y=3z\)

\(\Rightarrow\dfrac{5x}{30}=\dfrac{2y}{30}=\dfrac{3z}{30}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{x+y-z}{6+15-10}=\dfrac{33}{11}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{6}=3\Rightarrow x=18\\\dfrac{y}{15}=3\Rightarrow y=45\\\dfrac{z}{10}=3\Rightarrow z=30\end{matrix}\right.\)

Vậy \(x=18,\) \(y=45\) hoặc \(z=30.\)

c) Giải

(Vì mk bt bạn bấm nhầm nên đề bị sai, mk sửa 7 \(\rightarrow\) y do trên bàn phím, 7 với y ở vị trí gần nhau mà 2 với y ở cách xa nhau nên sửa như vậy nhé)

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Rightarrow\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{4-6+12}=\dfrac{x-1-2y+4+3z-9}{10}\)

\(=\dfrac{\left(x-2y+3z\right)-\left(1-4+9\right)}{10}=\dfrac{14-6}{10}=\dfrac{4}{5}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=\dfrac{4}{5}\Rightarrow x=\dfrac{13}{5}\\\dfrac{y-2}{3}=\dfrac{4}{5}\Rightarrow y=\dfrac{22}{5}\\\dfrac{z-3}{4}=\dfrac{4}{5}\Rightarrow z=\dfrac{31}{5}\end{matrix}\right.\)

Vậy \(x=\dfrac{13}{5},\) \(y=\dfrac{22}{5}\)\(z=\dfrac{31}{5}.\)

c) Giải

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x^2+2y^2-z^2=-12\)

\(\Rightarrow\left(2k\right)^2+2\left(3k\right)^2-\left(5k\right)^2=-12\)

\(\Rightarrow4.k^2+18.k^2-25.k^2=-12\)

\(\Rightarrow\left(-3\right)k^2=-12\)

\(\Rightarrow k^2=4\)

\(\Rightarrow k=\pm2\)

\(\circledast k=-2\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-10\end{matrix}\right.\)

\(\circledast k=2\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=10\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=-4;y=-6;z=-10\\x=4;y=6;z=10\end{matrix}\right..\)

20 tháng 10 2018

câu b bạn ko làm đc hả

11 tháng 7 2017

a)Xét \(x=\dfrac{y}{2}=\dfrac{z}{3}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\\y=2k\\z=3k\end{matrix}\right.\) (1)

Thay (1) vào 4x - 3y + 2z = 36

\(\Rightarrow4.k-3.2k+2.3k=36\)

\(\Rightarrow4k-6k+6k=36\Rightarrow4k=36\)

\(\Rightarrow k=\dfrac{36}{4}=9\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=2.4=8\\z=3.4=12\end{matrix}\right.\)

Vậy...............................................................

b) Xét \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=4k\\z=7k\end{matrix}\right.\) (2)

Thay (2) vào 2x - 3z = 44

\(\Rightarrow2.5k-3.7k=44\)

\(\Rightarrow-11k=44\Rightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.\left(-4\right)=-20\\y=4.\left(-4\right)=-16\\z=7.\left(-4\right)=-28\end{matrix}\right.\)

Vậy,................................................

c) Xét \(\dfrac{-x}{7}=\dfrac{y}{11}=\dfrac{-z}{5}=\dfrac{x}{-7}=\dfrac{z}{-5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-7k\\y=11k\\z=-5k\end{matrix}\right.\) (3)

Thay (3) vào -3z - 2y - x = -88

\(\Rightarrow-3.\left(-5k\right)-2.11k-\left(-7k\right)=-88\)

\(\Rightarrow15k-22k+7k=-88\Rightarrow0k=88\)

\(\Rightarrow k\in\varnothing\)

Suy ra: Không có cặp ( x; y; z) thỏa mãn

Vậy.................................................................

d) Xét \(\dfrac{y}{12}=\dfrac{x}{-5}=\dfrac{z}{11}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5k\\y=12k\\z=11k\end{matrix}\right.\) (4)

Thay (4) vào 5y - 2z = 114

\(\Rightarrow6.12k-2.11k=114\)

\(\Rightarrow50k=114\Rightarrow k=2,28\)

\(\Rightarrow\left\{{}\begin{matrix}x=-5.2,28=-11,4\\y=12.2,28=27,36\\z=25,08\end{matrix}\right.\)

Vậy..............................................

e) Xét \(\dfrac{x}{25}=\dfrac{y}{17}=\dfrac{z}{32}=k\)

\(\left\{{}\begin{matrix}x=25k\\y=17k\\z=32k\end{matrix}\right.\) (5)

Thay (5) vào -2z + 3y - 4x = -452

\(\Rightarrow\left(-2\right).32k+3.17k-4.25k=-452\)

\(\Rightarrow-113k=-452\Rightarrow k=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=25.5=100\\y=17.4=68\\z=32.4=128\end{matrix}\right.\)

Vậy.......................................................

11 tháng 7 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\\ \Rightarrow\dfrac{4x}{4}-\dfrac{3y}{6}+\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{36}{4}=9\)

+) \(\dfrac{x}{1}=9\Rightarrow x=9\)

+) \(\dfrac{y}{2}=9\Rightarrow y=18\)

+) \(\dfrac{z}{3}=9\Rightarrow z=27\)

Vậy x = 9; y = 18; z = 27.

tương tự

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow x=2k;y=3k;z=4k\)

sau đó bạn tự thay vào A và B r tính nhá

7 tháng 8 2017

Đặt:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=4k\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{2k+3k-4k}{2k-3k+4k}=\dfrac{k}{3k}=\dfrac{1}{3}\)

\(\Rightarrow B=\dfrac{2.2k+3.3k+4k}{2k-2.3k-3.4k}=\dfrac{4k+9k+4k}{2k-6k-12k}=\dfrac{17k}{-16k}=\dfrac{17}{-16}\)

5 tháng 11 2017

a)vì\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{5}\)=>\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)và 2x+3y+5z=86

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{2x}{6}\)=\(\dfrac{3y}{12}\)=\(\dfrac{5z}{25}\)=\(\dfrac{2x+3y+5z}{6+12+25}\)\(\dfrac{86}{43}\)=2

\(\dfrac{2x}{6}\)=2=>2x=2.6=12=>x=12:2=6

\(\dfrac{3y}{12}\)=2=>3y=12.2=24=>y=24:3=8

\(\dfrac{5z}{25}\)=2=>5z=25.2=50=>z=50:5=10

vậy x=6,y=8,z=10

5 tháng 11 2017

\(\dfrac{x}{3}\)=\(\dfrac{y}{4}\)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)(1)

\(\dfrac{y}{6}\)=\(\dfrac{z}{8}\)=>\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)(2)

từ (1)(2)=>\(\dfrac{x}{9}\)=\(\dfrac{y}{12}\)=\(\dfrac{z}{16}\)=>\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)và 3x-2y-z=13

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{3x}{27}\)=\(\dfrac{2y}{24}\)=\(\dfrac{z}{16}\)=\(\dfrac{3x-2y-z}{27-24-16}\)=\(\dfrac{13}{-13}\)=-1

\(\dfrac{3x}{27}\)=-1=>3x=-1.27=-27=>x=-27x;3=-9

\(\dfrac{2y}{24}\)=-1=>2y=-1.24=-24=>y=-24:2=-12

\(\dfrac{z}{16}\)=-1=>z=-1.16=-16

vậy...

6 tháng 8 2018

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{5}\) = \(\dfrac{y}{4}\) = \(\dfrac{z}{3}\) = \(\dfrac{x+2y+3z}{5+8+9}\) = \(\dfrac{x+2y+3z}{22}\)

\(\dfrac{x}{5}\)= \(\dfrac{y}{4}\) = \(\dfrac{z}{3}\) = \(\dfrac{x-2y+3z}{5-8+9}\) = \(\dfrac{x-2y+3z}{6}\)

=> \(\dfrac{x+2y+3z}{22}\) = \(\dfrac{x-2y+3z}{6}\)

=> \(\dfrac{x+2y+3z}{x-2y+3z}\) = \(\dfrac{22}{6}\) =\(\dfrac{11}{3}\)

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

17 tháng 12 2017

Theo bài ra ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2+3z^2}{18+32+75}=\dfrac{-100}{125}=\dfrac{-4}{5}\)

Suy ra:

\(x=\dfrac{-4}{5}.3=\dfrac{-12}{5}\)

\(y=\dfrac{-4}{5}.4=\dfrac{-16}{5}\)

\(z=\dfrac{-4}{5}.5=-4\)