Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}\)
\(=2\left(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{x-1}{x+1}=\dfrac{2007}{2009}\)
\(\Leftrightarrow2009x-2009=2007x+2007\)
\(\Leftrightarrow2x=4016\)
\(\Leftrightarrow x=2008\)
b/ \(\sqrt{12-\dfrac{12}{x^2}}+\sqrt{x^2-\dfrac{12}{x^2}}=x^2\)
\(\Leftrightarrow x-\sqrt{12-\dfrac{12}{x^2}}=\sqrt{x^2-\dfrac{12}{x^2}}\)
Bình phương 2 vế rút gọn
\(\Leftrightarrow x^4-x^2-4\sqrt{3\left(x^4-x^2\right)}+12=0\)
Đặt \(\sqrt{x^4-x^2}=a\)
\(\Rightarrow a^2-4\sqrt{3}a+12=0\)
\(\Leftrightarrow a=2\sqrt{3}\)
\(\Leftrightarrow x^4-x^2=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a)\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\left(1\right)\)
ĐK:\(x\ne0\)
\(\left(1\right)\Leftrightarrow\dfrac{x^3+1-\left(x^3-1\right)}{\left(x^2+1+x\right)\left(x^2+1-x\right)}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2}{\left(x^2+1\right)^2-x^2}=\dfrac{3}{x\left(x^4+x^2+1\right)}\\ \Leftrightarrow\dfrac{2x-3}{x\left(x^4+x^2+1\right)}=0\Rightarrow2x-3=0\Leftrightarrow x=\dfrac{3}{2}\left(TM\right)\)
\(\dfrac{9-x}{2009}+\dfrac{11-x}{2011}=2\Leftrightarrow\left(\dfrac{9-x}{2009}-1\right)+\left(\dfrac{11-x}{2011}-1\right)=0\Leftrightarrow\dfrac{-2000-x}{2009}+\dfrac{-2000-x}{2011}=0\\ \Leftrightarrow\left(-2000-x\right)\left(\dfrac{1}{2009}+\dfrac{1}{2011}\right)=0\Rightarrow x=-2000\)
1) \(A=1+2+2^2+2^3+......+2^{2015}\)
\(\Leftrightarrow2A=2+2^2+2^3+......+2^{2016}\)
\(\Leftrightarrow2A-A=\left(2+2^2+2^3+......+2^{2016}\right)-\left(1+2+2^2+2^3+......+2^{2015}\right)\)
\(\Leftrightarrow A=2^{2016}-1\)
Vậy \(A=2^{2016}-1\)
6)Ta có: \(13+23+33+43+.......+103=3025\)
\(\Leftrightarrow2.13+2.23+2.33+2.43+.......+2.103=2.3025\)
\(\Leftrightarrow26+46+66+86+.......+206=6050\)
\(\Leftrightarrow\left(23+3\right)+\left(43+3\right)+\left(63+3\right)+\left(83+3\right)+.......+\left(203+3\right)=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+3.10=6050\)
\(\Leftrightarrow23+43+63+83+.......+203+=6050-30\)
\(\Leftrightarrow23+43+63+83+.......+203+=6020\)
Vậy S=6020
b, B có 19 thừa số
=> \(-B=(1-\frac{1}{4})(1-\frac{1}{9})(1-\frac{1}{16})...(1-\frac{1}{400}) \)
<=>\(-B=\frac{(2-1)(2+1)(3-1)(3+1)(4-1)(4+1)...(20-1)(20+1)}{4.9.16...400} \)
<=>\(-B=\frac{(1.2.3.4...19)(3.4.5...21)}{(2.3.4.5.6...20)(2.3.4.5...20)} \)
<=>\(-B=\frac{21}{20.2} =\frac{21}{40} \)
<=>\(B=\frac{-21}{40} \)
a: TH1: x>=2
=>2x-4<=x+12
=>x<=16
=>2<=x<=16
TH2: x<2
=>4-2x<=x+12
=>-3x<=8
=>x>=-8/3
=>-8/3<=x<2
b: TH1: x>=1
BPT sẽ là \(\dfrac{x-1}{x+2}< 1\)
=>(x-1-x-2)/(x+2)<0
=>x+2<0
=>x<-2(loại)
TH2: x<1
BPT sẽ là \(\dfrac{1-x}{x+2}-1< 0\)
=>(1-x-x-2)/(x+2)<0
=>(-2x-1)/(x+2)<0
=>(2x+1)/(x+2)>0
=>x>-1/2 hoặc x<-2
=>-1/2<x<1 hoặc x<-2
Q = \(Q=\dfrac{x^3}{y+z}+\dfrac{y^3}{x+z}+\dfrac{z^3}{x+y}\)
Tìm Qmin biết x+y+z \(\ge\)6 , x,y,z> 0
\(\dfrac{x+10}{2003}+\dfrac{x+6}{2007}+\dfrac{x+12}{2001}+3=0\)
<=>\(\dfrac{x+10}{2003}+1+\dfrac{x+6}{2007}+1+\dfrac{x+12}{2001}+1=0\)
<=>\(\dfrac{x+2013}{2003}+\dfrac{x+2013}{2007}+\dfrac{x+2013}{2001}=0\)
<=>\(\left(x+13\right)\left(\dfrac{1}{2003}+\dfrac{1}{2007}+\dfrac{1}{2001}\right)=0\)
vì 1/2003+1/2007+1/2001 khác 0
=>x+13=0<=>x=-13
vậy.............