Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}+\dfrac{x+2024}{2}=0\)
\(\Leftrightarrow(\dfrac{x+1}{2015}+1)+(\dfrac{x+2}{2014}+1)+(\dfrac{x+3}{2013}+1)+(\dfrac{x+4}{2012}+1)+\dfrac{x+2024}{2}-4=0\)\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}+\dfrac{x+2016}{2}=0\)\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}\right)=0\)
Hiển nhiên: \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}>0\)
\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)
Giải:
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow2+\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=2+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow1+\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}=1+\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}\)
\(\Leftrightarrow\left(1+\dfrac{x+1}{2015}\right)+\left(1+\dfrac{x+2}{2014}\right)=\left(1+\dfrac{x+3}{2013}\right)+\left(1+\dfrac{x+4}{2012}\right)\)
\(\Leftrightarrow\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}=\dfrac{x+3+2013}{2013}+\dfrac{x+4+2012}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
Nên \(x+2016=0\)
\(\Leftrightarrow x=0-2016\)
\(\Leftrightarrow x=-2016\)
Vậy ...
Chúc bạn học tốt!
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
do \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\Rightarrow x=2016\)
váy x=2016
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(pt\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Dễ thấy: \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Rightarrow x+2016=0\Rightarrow x=-2016\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\dfrac{x+1}{2015}+1+\dfrac{x+1}{2014}+1-\dfrac{x+3}{2013}-1-\dfrac{x+4}{2012}-1=0\)
\(\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}-\dfrac{x+3+2013}{2013}-\dfrac{x+4+2012}{2012}=0\)
\(\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Vì \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}< 0\)
Nên để:\(\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Thì \(x+2016=0\Leftrightarrow x=-2016\)
\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
\(\Leftrightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)
Mà \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)
\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)
Vậy x = -2016
\(\dfrac{1-x}{2013}=1+\dfrac{2-x}{2012}-\dfrac{x}{2014}\)
\(\Leftrightarrow1+\dfrac{1-x}{2013}=1+\dfrac{2-x}{2013}+1-\dfrac{x}{2014}\)
\(\Leftrightarrow\dfrac{2013+1-x}{2013}=\dfrac{2012+2-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}=\dfrac{2014-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}-\dfrac{2014-x}{2012}-\dfrac{2014-x}{2014}=0\)
\(\Leftrightarrow\left(2014-x\right)\left(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2014}\right)=0\)
\(\Leftrightarrow2014-x=0\) ( Vì \(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2014}\ne0\) )
\(\Leftrightarrow x=2014\)
Vậy pt có nghiệm x = 2014
\(\dfrac{1-x}{2013}=1+\dfrac{2-x}{2012}-\dfrac{x}{2014}\)
\(\Leftrightarrow\dfrac{1-x}{2013}=\dfrac{2-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{1-x}{2013}+1=\dfrac{2-x}{2012}+1+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\dfrac{2014-x}{2013}=\dfrac{2014-x}{2012}+\dfrac{2014-x}{2014}\)
\(\Leftrightarrow\left(2014-x\right)\left(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
\(\Leftrightarrow2014-x>0\) (Vì \(\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\))
\(\Leftrightarrow x=2014\)
Vậy pt có tập nghiệm là x = 2014
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}=2012\)
\(\Rightarrow\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}+...+\dfrac{x-2012}{2}-2012=0\)
\(\Rightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1+...+\dfrac{x-2012}{2}-1=0\)
\(\Rightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}+...+\dfrac{x-2014}{2}=0\)
\(\Rightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\right)=0\)
Mà \(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}+...+\dfrac{1}{2}\ne0\)
\(\Rightarrow x-2014=0\)
\(\Rightarrow x=2014\)
Bài của bạn nè bạn gái!
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{1012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\right)=0\)
mà \(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{10}{2008}\ne0\)
\(\Rightarrow x-2014=0\Rightarrow x=2014\)
vậy x=2014
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}+1+\dfrac{x-2}{2012}+1+\dfrac{x-3}{2011}+1-\dfrac{x-4}{2010}+1-\dfrac{x-5}{2009}+1-\dfrac{x-6}{2008}+1=0\)
\(\Leftrightarrow\dfrac{x-2014}{2013}+\dfrac{x-2014}{2012}+\dfrac{x-2014}{2011}-\dfrac{x-2014}{2010}-\dfrac{x-2014}{2009}-\dfrac{x-2014}{2008}=0\)
\(\Leftrightarrow\left(x-2014\right)\left(\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2011}-\dfrac{1}{2010}-\dfrac{1}{2009}-\dfrac{1}{2008}\ne0\right)=0\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Vậy PT có nghiệm là \(x=2014\)
\(\Leftrightarrow\dfrac{5-x^2}{2012}=\dfrac{4-x^2}{2013}+1-\dfrac{x^2-3}{2014}\)
\(\Leftrightarrow\dfrac{5-x^2}{2012}+1=\dfrac{4-x^2}{2013}+1+\dfrac{3-x^2}{2014}+1\)
\(\Leftrightarrow2017-x^2=0\)
hay \(x\in\left\{\sqrt{2017};-\sqrt{2017}\right\}\)
\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2012}{3}\)(mk nghĩ đề như thế này)
\(\Leftrightarrow\dfrac{x-3}{2012}-1+\dfrac{x-2}{2013}-1=\dfrac{x-2013}{2}-1+\dfrac{x-2012}{3}-1\)
\(\Leftrightarrow\dfrac{x-2015}{2012}+\dfrac{x-2015}{2013}=\dfrac{x-2015}{2}+\dfrac{x-2015}{3}\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow x=2015\)(vì \(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\))
\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2015}{3}\\ \Leftrightarrow\left(\dfrac{x-3}{2012}-1\right)+\left(\dfrac{x-2}{2013}-1\right)=\left(\dfrac{x-2013}{2}-1\right)+\left(\dfrac{x-2015}{3}-1\right)\\ \Leftrightarrow\dfrac{x-2018}{2012}+\dfrac{x-2018}{2013}-\dfrac{x-2018}{2}-\dfrac{x-2018}{3}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\right)\\ x=2018\)
Vậy phương trình có nghiệm \(x=2018\)