Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu thức trên có giá trị nguyên tức là 5x+7 chia hết cho 2x+1 => 2(5x+7) chia hết cho 2x+1
\(\frac{2\left(5x+7\right)}{2x+1}=\frac{10x+14}{2x+1}=\frac{\left(10x+5\right)+9}{2x+1}=\frac{5\left(2x+1\right)+9}{2x+1}=5+\frac{9}{2x+1}.\)
Để biểu thức trên có giá trị nguyên thì 9 phải chia hết cho 2x+1 tức là 2x+1 phải là ước của 9
=> 2x+1={-1;-3;-9; 1; 3; 9} từ các gá trị của 2x+1 sẽ tính được các giá trị của x
\(A=\frac{2x-6}{x-1}\)
\(\Leftrightarrow A=\frac{2x-2-4}{x-1}=2-\frac{4}{x-1}\)
Để \(A\in Z\)thì \(\frac{4}{x-1}\in Z\)
\(\Rightarrow\left(x-1\right)\inƯ_4=\left(\pm1;\pm2;\pm4\right)\)
\(\Rightarrow x=\left\{2;3;5;0;-1;-3\right\}\)
Vậy ..........
Bài 1:Vì \(\left(x+1\right)^{2008}\ge0\) nên \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010-0=2010\)
Nên P lớn nhất khi \(P=2010\Rightarrow\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Bài 2:Vì 5>0 nên C nhỏ nhất khi \(\left|x\right|-2< 0\) và \(\left|x\right|-2\) lớn nhất
Nên \(\left|x\right|-2=-1\Rightarrow\left|x\right|=1\Rightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
\(P=2010-\left(x+1\right)^{2008}\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\)
\(\left[\left(x+1\right)^{1004}\right]^2\ge0\)
\(\Rightarrow P=2010-\left[\left(x+1\right)^{1004}\right]^2\le2010\)
Để \(P_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2_{Min}\Rightarrow\left[\left(x+1\right)^{1004}\right]^2=0\)
\(\Rightarrow P=2010-0=2010\)
(Dấu"=" xảy ra <=> \(x=-1\)
Bài 2:
Để \(C_{Min}\Rightarrow|x|-2_{Min}\Rightarrow|x|_{Min}\Rightarrow|x|=1\Rightarrow|x|-2=-1\)
\(\Rightarrow C=-5\)
Vì để C Min => /x/ -2 là số nguyễn âm lơn nhất có thể
a) Đặt \(A=\frac{x}{x+3}=\frac{x+3-3}{x+3}=\frac{x+3}{x+3}-\frac{3}{x+3}=1-\frac{3}{x+3}\)
Để A nguyên thì \(\frac{3}{x+3}\) nguyên => \(3⋮x+3\)
=> \(x+3\in\left\{1;-1;3;-3\right\}\)
=> \(x\in\left\{-2;-4;0;-6\right\}\)
Vậy \(x\in\left\{-2;-4;0;-6\right\}\)
b) Đặt \(B=\frac{x-1}{2x+1}\)
Để B nguyên thì 2B nguyên
Ta có:
\(2B=\frac{2.\left(x-1\right)}{2x+1}=\frac{2x-2}{2x+1}=\frac{2x+1-3}{2x+1}=\frac{2x+1}{2x+1}-\frac{3}{2x+1}=1-\frac{3}{2x+1}\)
Để 2B nguyên thì \(\frac{3}{2x+1}\) nguyên => \(3⋮2x+1\)
=> \(2x+1\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{0;-2;2;-4\right\}\)
=> \(x\in\left\{0;-1;1;-2\right\}\)
Vậy \(x\in\left\{0;-1;1;-2\right\}\)
Để \(P=\frac{x-1}{x-3}\left(x∈Z ; x ≠0\right)\) nhận giá trị nguyên
=> x - 1 ⋮ x - 3
=> ( x - 3 ) + 2 ⋮ x - 3
Mà x - 3 ⋮ x - 3 ∀ x ∈ Z
=> 2 ⋮ x - 3
=> x - 3 ∈ Ư(2)
Ta có bảng ;
x-3 | -2 | -1 | 1 | 2 |
x | -1 | 2 | 4 | 5 |
\(P=\frac{x-1}{x-3}\) | \(\frac{1}{2}\)( loại ) ( do P nhận giá trị nguyên ) | -1 ( t/m ) | 3 ( t/m ) | 2 ( t/m ) |
Để P nhận giá trị nguyên lớn nhất => P = 3 và x = 4
VÌ ( 3 - x )2 ≥ 0 ∀ x ∈ Z
=> ( 3 - x )2 - 4 ≥ 0 - 4
=> Để A = ( 3 - x )2 - 4 nhận giá trị nhỏ nhất thì A = -4
<=> ( 3 - x )2 = 0
<=> 3 - x = 0
<=> x = 3
ĐKXĐ: x<>3
Để \(\dfrac{4x-1}{3-x}\) nguyên thì \(4x-1⋮3-x\)
=>\(4x-1⋮x-3\)
=>\(4x-12+11⋮x-3\)
=>\(11⋮x-3\)
=>\(x-3\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{4;2;14;-8\right\}\)
giúp mikk please