Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5: GTNN chứ nhỉ?
Với mọi gt của \(x;y\in R\) ta có:
\(x^2+3\left|y-2\right|+1\ge1\)
Hay \(A\ge1\) với mọi gt của \(x;y\in R\)
Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy..................
Bài 6: GTLN chứ?
Với mọi giá trị của \(x\in R\) ta có:
\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)
Hay \(B\le5\) với mọi giá trị của \(x\in R\)
Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)
Vậy...................
Bài 4 :
\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)
\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)
Bài 5 :
\(A=1^2+3^2+6^2+9^2+.............+39^2\)
\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)
\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)
\(=10+3^2.818\)
\(=10+9.818\)
\(=7372\)
\(\frac{4^{10}.9^6+3^{12}.8^5}{6^{13}.4-2^{16}.3^{12}}\)
\(=\frac{\left(2^2\right)^{10}.\left(3^2\right)^6+3^{12}.\left(2^3\right)^5}{\left(2.3\right)^{13}.2^2-2^{16}.3^{12}}\)
\(=\frac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{13}.3^{13}.2^2-2^{16}.3^{12}}\)
\(=\frac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{15}.3^{12}.3-3^{12}.2^{16}}\)
\(=\frac{2^4}{3}\)
8)\(\frac{4}{9}:\left(-\frac{1}{7}\right)+6\frac{5}{9}:\left(-\frac{1}{7}\right)\)
=\(\frac{4}{9}:\left(-\frac{1}{7}\right)+\frac{59}{9}:\left(-\frac{1}{7}\right)\)
=\(\left(\frac{4}{9}+\frac{59}{9}\right).\left(-7\right)\)
=7.(-7)
=-49
a: \(A=\dfrac{2^{12}\cdot3^{10}+2^3\cdot2^9\cdot3^9\cdot3\cdot5}{2^{12}\cdot3^{12}+2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{11}\cdot3^{11}\cdot7}\)
\(=\dfrac{2^{12}\cdot3^{10}\cdot6}{2^{11}\cdot3^{11}\cdot7}=\dfrac{2}{3}\cdot\dfrac{6}{7}=\dfrac{12}{21}=\dfrac{4}{7}\)
b: \(B=\left(\dfrac{12}{105}+\dfrac{9^{15}}{3}\right)\cdot\dfrac{1}{3}\cdot\dfrac{6^8}{6^4\cdot2^4}\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot\dfrac{1}{3}\cdot3^4\)
\(=\dfrac{12+35\cdot9^{15}}{105}\cdot3^3=\dfrac{9\left(12+35\cdot9^{15}\right)}{35}\)
Các bạn ơi, giúp mình giải bài này với. Mình đang cần gấp!!!!!
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???
a: \(=\dfrac{2^4\cdot3^6\cdot2\cdot3}{2^4\cdot3^6}=6\)
b: \(=\dfrac{2^{20}\cdot3^{20}}{2^{18}\cdot3^{18}}=2^2\cdot3^2=36\)
c: \(=\dfrac{12^5\cdot13}{12^6\cdot13}-\dfrac{12^8\cdot\left(-11\right)}{12^9\cdot\left(-11\right)}=\dfrac{1}{12}-\dfrac{1}{12}=0\)
\(\dfrac{4^{10}.9^6+3^{12}.8^5}{6^{13}.4-2^{16}.3^{12}}\)
\(=\dfrac{\left(2^2\right)^{10}.\left(3^2\right)^6+3^{12}.\left(2^3\right)^5}{\left(2.3\right)^{13}.2^2-2^{16}.3^{12}}\)
\(=\dfrac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{13}.3^{13}.2^2-2^{16}.3^{12}}\)
\(=\dfrac{2^{20}.3^{12}+3^{12}.2^{15}}{2^{15}.3^{13}-2^{16}.3^{12}}\)
\(=\dfrac{2^{15}.3^{12}.\left(2^5+1\right)}{2^{15}.3^{13}.\left(3-2\right)}\)
\(=\dfrac{2^5+1}{3-2}\)
\(=\dfrac{32+1}{1}=33\)