Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{\left(17\frac{2}{9}-15\frac{2}{15}\right):5\frac{2}{9}}{\left(18+3,75\right):0,25}.25\%=\frac{\left(17+\frac{2}{9}-15-\frac{2}{15}\right):\frac{47}{9}}{\left(18+3,75\right).4}.\frac{1}{4}\)
\(=\frac{\left(2+\frac{4}{45}\right).\frac{9}{47}}{\left(18+3,75\right).16}=\frac{\frac{94}{45}.\frac{9}{47}}{288+60}=\frac{\frac{2}{5}}{348}=\frac{2}{5}.\frac{1}{348}=\frac{174}{5}=34,8\)
b) \(\frac{\frac{5}{3}-\frac{5}{7}+\frac{5}{9}}{\frac{10}{3}-\frac{10}{7}+\frac{10}{9}}=\frac{5\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{9}\right)}{10\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{9}\right)}=\frac{1}{2}\)
b) \(\frac{\frac{5}{3}-\frac{5}{7}+\frac{5}{9}}{\frac{10}{3}-\frac{10}{7}+\frac{10}{9}}=\frac{5.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{9}\right)}{10.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{9}\right)}=\frac{5}{10}=\frac{1}{2}\)
M=\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{25}+4^{15}}=\dfrac{4^{20}\left(2^{20}+1\right)}{4^{15}\left(4^{10}+1\right)}=\dfrac{2^{20}+1}{4^{10}+1}\)
T=\(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{9^{10}.5^{30}}{25^{15}.3^{15}}=\dfrac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^5}-\frac{5^{10}.7^3-\left(5^2\right)^5.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.\left(2.7\right)^3}\)
\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^4}{5^9.7^3+5^9.2^3.7^3}\)
\(=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^5\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7\right)}{5^9.7^3\left(1+2^3\right)}\)
\(=\frac{2^{12}.3^4.2}{2^{12}.3^5.4}-\frac{5^{10}.7^3.\left(-6\right)}{5^9.7^3.9}\)
\(=\frac{1}{6}-\frac{-10}{3}=\frac{1}{6}+\frac{10}{3}=\frac{1}{6}+\frac{20}{6}=\frac{21}{6}=\frac{7}{2}\)
\(A=-5,13:\left(5\dfrac{5}{28}-1\dfrac{8}{9}.1,25+1\dfrac{16}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{125}{100}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{17}{9}.\dfrac{5}{4}+\dfrac{79}{63}\right)\)
\(=-5,13:\left(\dfrac{145}{28}-\dfrac{85}{36}+\dfrac{79}{63}\right)\)
\(=-5,13:\dfrac{57}{14}=-5,13:\dfrac{15}{57}\)
\(=\dfrac{-71,82}{57}=1,26\)
Vậy \(A=1,26\)
\(B=\left(3\dfrac{1}{3}.1,9+19,5:4\dfrac{1}{3}\right).\left(\dfrac{62}{75}-\dfrac{4}{25}\right)\)
\(=\left(\dfrac{10}{3}.1,9+19,5:\dfrac{13}{3}\right).\left(\dfrac{62-12}{75}\right)\)
\(=\left(\dfrac{19}{3}+\dfrac{58,5}{13}\right).\dfrac{50}{75}\)
\(=\left(\dfrac{19}{3}+4,5\right).\dfrac{2}{3}\)
\(=\dfrac{32,5}{3}.\dfrac{2}{3}=\dfrac{65}{9}=7\dfrac{2}{9}\)
Vậy \(B=7\dfrac{2}{9}\)
Bài làm
\(\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(=\frac{25^5.7^3-25^5.7^4}{5^9.7^3+5^9.14^3}\)
\(=\frac{25^5\left(7^3-7^4\right)}{5^9\left(7^3+14^3\right)}\)
\(=\frac{25^5.\left(-7\right)}{5^9.\left[7^3+\left(2.7\right)^3\right]}=\frac{25^5.\left(-7\right)}{5^9\left[7^3.7^3+8.343\right]}\)
\(=\frac{5.\left(-7\right)}{7^6+2744}=\frac{-5}{7^5+7^3.8}=-\frac{-5}{7^2.7^3+7^3.8}\)
\(=-\frac{5}{7^3.\left(49+8\right)}=-\frac{5}{7^3.57}=-\frac{5}{19551}\)
Không chắc nha !
a, \(15\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)-25\dfrac{1}{4}:\left(-\dfrac{5}{7}\right)\)
\(=15\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)-25\dfrac{1}{4}.\left(-\dfrac{7}{5}\right)\)
\(=-\dfrac{7}{5}.\left(15\dfrac{1}{4}-25\dfrac{1}{4}\right)\)
\(=-\dfrac{7}{5}.\left(-10\right)\)
\(=\dfrac{7}{5}.10\)
\(=\dfrac{7}{1}.2\)
\(=14\)
b, \(\sqrt{0.16}-\sqrt{0.25}\)
\(=0.4-0.5\)
\(=-0.1\)
\(P=\left(0,5-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right):\left(-2\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{3}{5}\right):\left(-3\right)+\dfrac{1}{3}-\left(-\dfrac{1}{6}\right).\left(-\dfrac{1}{2}\right)\)
\(=\left(\dfrac{-5-6}{10}\right):\left(-3\right)+\dfrac{1}{3}-\dfrac{1}{12}\)
\(=-\dfrac{11}{10}:\left(-3\right)+\dfrac{1}{4}\)
\(=-\dfrac{11}{10}.\left(-\dfrac{1}{3}\right)+\dfrac{1}{4}=\dfrac{11}{30}+\dfrac{1}{4}=\dfrac{37}{60}\)
Vậy \(P=\dfrac{37}{60}\)
\(Q=\left(\dfrac{2}{25}-1,008\right):\dfrac{4}{7}:\left[\left(3\dfrac{1}{4}-6\dfrac{5}{9}\right):2\dfrac{2}{17}\right]\)
\(=\left(\dfrac{2}{25}-\dfrac{126}{125}\right):\dfrac{4}{7}:\left[\left(\dfrac{13}{4}-\dfrac{59}{9}\right).\dfrac{36}{17}\right]\)
\(=-\dfrac{116}{125}.\dfrac{7}{4}:\left(-\dfrac{119}{36}.\dfrac{36}{17}\right)\)
\(=\dfrac{-29.7}{125}:\left(-7\right)=\dfrac{29}{125}\)
Vậy \(Q=\dfrac{29}{125}\)
a: \(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1-\dfrac{15}{17}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)\)
\(=\left(\dfrac{12}{17}-1-\dfrac{15}{17}\right)+1\)
\(=\dfrac{-20}{17}+1=\dfrac{-3}{17}\)
b: \(B=\dfrac{-5}{3}\cdot16\dfrac{2}{7}-\dfrac{-5}{3}\cdot28\dfrac{2}{7}\)
\(=\dfrac{-5}{3}\left(16+\dfrac{2}{7}-28-\dfrac{2}{7}\right)=\dfrac{-5}{3}\cdot\left(-12\right)=20\)
c: \(C=25\cdot\dfrac{-1}{27}+\dfrac{1}{5}-2\cdot\dfrac{1}{4}-\dfrac{1}{2}\)
\(=\dfrac{-25}{27}+\dfrac{1}{5}-1\)
\(=\dfrac{-125+27-135}{135}=\dfrac{-233}{135}\)
\(\dfrac{3^{10}.15^5}{25^3.9^7}\)
\(=\dfrac{3^{10}.3^55^5}{\left(5^2\right)^3.\left(3^2\right)^7}\)
\(=\dfrac{3^{15}.5^5}{5^6.3^{14}}\)
\(=\dfrac{3.1}{5.1}\)
\(=\dfrac{3}{5}\)