Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)
=\(\dfrac{\left(\sqrt{a}+2\right).\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{\left(\sqrt{a}-4\right).\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
Điều kiện bạn tự ghi nhé
\(B=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-3}+\dfrac{\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}+1}:\left(\dfrac{\left(\sqrt{a}+3\right).\left(\sqrt{a}-3\right)-\left(\sqrt{a}-2\right).\left(\sqrt{a}+2\right)+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\right)\)
\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{a-9-a+4+\sqrt{a}+2}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{\sqrt{a}-3}{\left(\sqrt{a}-3\right).\left(\sqrt{a}-2\right)}\)
\(=\dfrac{1}{\sqrt{a}+1}:\dfrac{1}{\sqrt{a}-2}\)
\(=\dfrac{1}{\sqrt{a}+1}.\dfrac{\sqrt{a}-2}{1}=\dfrac{\sqrt{a}-2}{\sqrt{a}+1}\)
Câu a:
ĐKXĐ: \(x\neq \pm 3\)
\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )
Vậy.......
Câu b:
ĐKXĐ: \(x< 2\)
Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)
\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)
\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)
\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)
\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )
\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)
\(\Rightarrow 2-x=6-2\sqrt{5}\)
\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)
Vậy...........
5. \(y=\dfrac{-3x}{x+2}\)
xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)
vậy D= (\(-\infty;+\infty\))\{-2}
6. \(y=\sqrt{-2x-3}\)
xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)
vậy D= (\(-\infty;\dfrac{-3}{2}\)]
7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)
xác định khi: x-4 >0 <=> x>4
vậy D= (\(4;+\infty\))
8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)
xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)
vậy D= (\(-\infty;5\))\ {3}
9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)
xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)
vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]
1. \(y=\dfrac{3x-2}{x^2-4x+3}\)
xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)
2.\(y=2\sqrt{5-4x}\)
xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)
vậy D= (\(-\infty;\dfrac{5}{4}\)]
3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)
xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)
vậy D= (\(-3;\dfrac{5}{2}\)]
4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)
xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)
Vậy D= [\(-2;9\)]\{2}
1) \(y=\dfrac{2x^2+1}{x^3-5x+4}\)
ĐK \(x^3-5x+4\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{\sqrt{17}-1}{2}\\x\ne\dfrac{-\sqrt{17}-1}{2}\end{matrix}\right.\)
TXĐ \(D=R\backslash\left\{1;\dfrac{\sqrt{17}-1}{2};\dfrac{-\sqrt{17}-1}{2}\right\}\)
2) \(y=\dfrac{\sqrt{x-2}}{\left(x-3\right)^3-1}\)
ĐK \(\left\{{}\begin{matrix}x-2\ge0\\x-3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne4\end{matrix}\right.\)
TXĐ \(D=[2;+\infty)\backslash\left\{4\right\}\)
3) \(y=\sqrt{x-2}-\dfrac{2}{\sqrt[3]{x-1}}\)
ĐK\(\left\{{}\begin{matrix}x+2\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne1\end{matrix}\right.\)
TXĐ \(D=[-2;+\infty)\backslash\left\{1\right\}\)
4) \(y=\dfrac{x^2+2}{\sqrt{\left(x+3\right)^2}}=\dfrac{x^2+2}{\left|x-3\right|}\)
ĐK \(x-3\ne0\Leftrightarrow x\ne3\)
TXĐ \(D=R\backslash\left\{3\right\}\)
5) \(y=\dfrac{\sqrt{x^2-2}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
ĐK \(\left\{{}\begin{matrix}x^2-2\ge0\\x>0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in(-\infty;-\sqrt{2}]\cap[\sqrt{2};+\infty)\\x>0\\x\ne9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ge\sqrt{2}\\x\ne9\end{matrix}\right.\)
TXĐ \(D=[\sqrt{2};+\infty)\backslash\left\{9\right\}\)
6) \(y=\sqrt{1-\sqrt{1+x}}\)
ĐK \(\left\{{}\begin{matrix}x+1\ge0\\1-\sqrt{1+x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge\sqrt{1+x}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\end{matrix}\right.\)
TXĐ \(D=\left[0;-1\right]\)
a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)
b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)