K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

`1/((sqrtx-1)(sqrtx+2))-1/((sqrtx-1)(3-sqrtx))`

`=1/((sqrtx-1)(sqrtx+2))+1/((sqrtx-1)(sqrtx-3))`

`=(sqrtx-3+sqrtx+2)/((sqrtx-1)(sqrtx+2)(sqrtx-3))`

`=(2sqrtx-1)/((sqrtx-1)(sqrtx+2)(sqrtx-3))`

23 tháng 6 2021

ko cs dau trừ mà bn có 2 bài lẫn

 

1 tháng 8 2018

rút gọn hở bạn?

đkxđ: x>0 ; x≠1

\(S=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}\right)+\left(x-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)+\dfrac{x-1}{\sqrt{x}}\left(\dfrac{\left(\sqrt{x}+1\right)^2-\left(\sqrt{x}-1\right)^2}{x-1}\right)\)

\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}+\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}+1-\sqrt{x}+1\right)\left(\sqrt{x}+1+\sqrt{x}-1\right)}{x-1}\)

\(\dfrac{2\sqrt{x}}{\sqrt{x}}+\dfrac{2\cdot2\sqrt{x}}{\sqrt{x}}=\dfrac{6\sqrt{x}}{\sqrt{x}}=6\)

3 tháng 8 2018

\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{3}{2-\sqrt{x}}+\dfrac{3\sqrt{x}-2}{x-2}\right):\left(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{2\sqrt{x}-x}\right)=\dfrac{x-2\sqrt{x}+3\sqrt{x}+6+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)

30 tháng 7 2018

\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

(ĐKXĐ: x\(\ge\) 0 ; x \(\ne\) 1 )

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right):\left(1-\sqrt{x}\right)\)

\(=\sqrt{x}+1\)

30 tháng 7 2018

\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\left(1-\sqrt{x}\right)=\left(1-x\right)\left(1-\sqrt{x}\right)=1-\sqrt{x}-x+x\sqrt{x}=x\sqrt{x}-x-\sqrt{x}+1\)

3 tháng 7 2018

\(a.\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)=\dfrac{x+1+\sqrt{x}}{x\sqrt{x}-1}.\dfrac{x\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

\(b.ĐK:x>2\) ( thường là những bài rút gọn sẽ kèm theo ĐK nhé , mình thêm như vậy , nếu không bạn chia TH ra )

\(\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}=\dfrac{\sqrt{x-1}-1+\sqrt{x-1}+1}{1-\dfrac{1}{x}}=\dfrac{2\sqrt{x-1}}{1-\dfrac{1}{x}}\)

\(c.\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=1\)

\(d.Tuong-tự\)

3 tháng 7 2018

bạnn giải giúp mik lun câu d lun nha?!:)))))cảm ơn nhiw!:))))))

Rút gọn: \(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\) Giải:: ĐK: x khác +- 1...
Đọc tiếp

Rút gọn:

\(M=1-\left[\dfrac{2x-1+\sqrt{x}}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right]\cdot\left[\dfrac{\left(x-\sqrt{x}\right)\left(1-\sqrt{x}\right)}{2\sqrt{x}-1}\right]\)

Giải::

ĐK: x khác +- 1

\(M=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)\left(\sqrt{x}+1\right)}{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}\right]\cdot\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{\left(\sqrt{x}-\dfrac{1}{2}\right)}{\left(1-\sqrt{x}\right)}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-\dfrac{1}{2}\right)}{1-\sqrt{x}+x}\cdot\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)^2}{2\left(\sqrt{x}-\dfrac{1}{2}\right)}\right]\)

\(=1-\left[\dfrac{-\sqrt{x}\left(1-\sqrt{x}\right)}{2}+\dfrac{-x\left(1-\sqrt{x}\right)^2}{2\left(1-\sqrt{x}+x\right)}\right]\)

rồi làm sao nữa ak?? Tớ có quy đồng lên, tính sơ sơ rồi nhưng thấy kq không gọn.

Câu b là : tìm các số nguyên x để M cũng là số nguyên . Nên tớ nghĩ kq sẽ gọn.

NHỜ MẤY CAO NHÂN RA TAY GIÚP VỚI NHAK ^^!

0
12 tháng 10 2022

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

12 tháng 12 2022

1:

\(=\dfrac{x-1}{\sqrt{x}}:\dfrac{x-1+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)

2: \(=\dfrac{1+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{1+\sqrt{1-x^2}}{\sqrt{1-x^2}}=\sqrt{\dfrac{1-x^2}{1+x}}=\sqrt{1-x}\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)