Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\dfrac{6\sqrt{6}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{1}{2}-2=-\dfrac{3}{2}\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{2^2.3}-\sqrt{6}}{2\sqrt{2}-2}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2-1}\right)}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-2\sqrt{6}\right).\dfrac{1}{\sqrt{6}}=\sqrt{6}\left(\sqrt{\dfrac{1}{2}}-2\right).\dfrac{1}{\sqrt{6}}=\dfrac{1}{2}-2=\dfrac{-3}{2}=VP\left(đpcm\right)\)
Câu a, b, bạn có thể làm được suy nghĩ đi nha
c)
Ta có pt tổng quát :
\(\dfrac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\dfrac{1}{\sqrt{a\left(a+1\right)}\left(\sqrt{a}+\sqrt{\left(a+1\right)}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}\sqrt{a+1}}=\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{a+1}}\)\(\Rightarrow C=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)..........Kaito Kid.......
a: \(=\dfrac{6}{4+\sqrt{3}-1}=\dfrac{6}{3+\sqrt{3}}=3-\sqrt{3}\)
b: \(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}=\sqrt{6}\cdot\dfrac{1}{\sqrt{6}}\left(\dfrac{1}{2}-2\right)=-\dfrac{3}{2}\)
Xét :\(\dfrac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\dfrac{\sqrt{n+1}}{2\sqrt{n\left(n+1\right)}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)
Do đó :
S\(< \dfrac{1}{2}\left(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}\right)\)\(=\dfrac{1}{2}\left(1-\dfrac{1}{5}\right)=\dfrac{2}{5}\)(dpcm)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{21+\sqrt{80}}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{5+\sqrt{\left(\sqrt{20}+1\right)^2}}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{4-\sqrt{6+\sqrt{20}}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{4-\sqrt{\left(\sqrt{5}+1\right)^2}}}{\sqrt{10}-\sqrt{2}}\)
C = \(\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}\) = \(\dfrac{2\sqrt{3-\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)}{10-2}\)
C = \(\dfrac{2\sqrt{30-10\sqrt{5}}+2\sqrt{6-2\sqrt{5}}}{8}\)
C = \(\dfrac{2\sqrt{\left(5-\sqrt{5}\right)^2}+2\sqrt{\left(\sqrt{5}-1\right)^2}}{8}\)
C = \(\dfrac{2\left(5-\sqrt{5}\right)+2\left(\sqrt{5}-1\right)}{8}\)
C = \(\dfrac{10-2\sqrt{5}+2\sqrt{5}-2}{8}\) = \(\dfrac{8}{8}\) = \(1\)
D = \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
D = \(\sqrt{\left(7-3\sqrt{5}\right)^2}-\sqrt{\left(7+3\sqrt{5}\right)^2}\)
D = \(7-3\sqrt{5}-\left(7+3\sqrt{5}\right)\) = \(7-3\sqrt{5}-7-3\sqrt{5}\)
D = \(-6\sqrt{5}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\) = \(\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
A = \(\sqrt{\sqrt{5}-\sqrt{5}+1}\) = \(\sqrt{1}=1\)
a: \(=2\cdot\dfrac{4}{3}\sqrt{3}-3\cdot\dfrac{1}{9}\sqrt{3}-6\cdot\dfrac{2}{15}\sqrt{3}\)
\(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
b: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
c: \(=6\sqrt{3}-4\sqrt{3}+\dfrac{3}{5}\cdot5\sqrt{3}=2\sqrt{3}+3\sqrt{3}=5\sqrt{3}\)
\(=3\sqrt{6}-2\sqrt{6}+\dfrac{3\sqrt{6}}{2}-\sqrt{6}=0+\dfrac{3\sqrt{6}}{2}=\dfrac{3\sqrt{6}}{2}\)