Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/15-1/16+1/16-1/17+...+1/2016-1/2017
A=1/15-1/2017
A=2002/30255
C=1/3[3/5.8+3/8.11+...+3/101.104]
C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]
C=1/3[1/5-1/104]
C=1/3.99/520
C=33/520
c) gọi biểu thức là S = 2 + 2\(^2+2^3+.....+2^{50}\)
2S=2\(^2+2^3+2^4+......+2^{50}+2^{51}\)
\(2S-S=S=2^{51}-2\)
b) \(1+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{10}}\)
= \(2+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^9}\)
2S-S=S=(\(2+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^9}\))-( \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{10}}\))
bạn tự tìm S nhé
mink làm được như thế đó, phần a mink không muốn nhấn mỏi tay bạn ạ, đừng nghĩ mink ko biết làm nha
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{199}\)
\(A=\dfrac{199}{597}-\dfrac{3}{597}=\dfrac{196}{597}\)
\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{197.199}\)
\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{199-197}{197.199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{197}-\dfrac{1}{199}\)
\(A=\dfrac{1}{3}-\dfrac{1}{999}\)
\(A=\dfrac{196}{697}\)
\(B=1+2+4+8+16+...+512+1024\)
\(2B=2+4+8+32+...+1024+2048\)
\(B=\left(2+4+8+...+2048\right)-\left(1+2+4+...+1024\right)\)
\(B=2048-1\)
\(B=2047\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
S=1/2+1/4+1/8+...+1/1024=(1/2)^1+(1/2)^2+(1/2)^3+...+(1/2)^10
2S=1+(1/2)^1+(1/2)^2+...+(1/2)^9
2S-S=1-(1/2)^10
vậy S=1-(1/2)^10