Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\dfrac{1}{3}-125\%.x=\dfrac{1}{4}\)
⇒ \(\dfrac{7}{3}-\dfrac{125}{100}.x=\dfrac{1}{4}\)
⇒ \(\dfrac{5}{4}x=\dfrac{28}{12}-\dfrac{3}{12}\)
⇒ \(\dfrac{5}{4}x=\dfrac{25}{12}\)
⇒ \(x=\dfrac{25}{12}.\dfrac{4}{5}\)
⇒ \(x=\dfrac{100}{60}\) \(=\dfrac{5}{3}\)
Vậy \(x=\dfrac{5}{3}\).
\(2\dfrac{1}{3}\) - 125% . x = \(\dfrac{1}{4}\)
=> \(\dfrac{7}{3}\) - \(\dfrac{125}{100}\) . x = \(\dfrac{1}{4}\)
=> \(\dfrac{5}{4}x\) = \(\dfrac{28}{12}\) - \(\dfrac{3}{12}\)
=> \(\dfrac{5}{4}x\) = \(\dfrac{25}{12}\)
=> \(\dfrac{25}{12}\). \(\dfrac{4}{5}\)
=> \(\dfrac{100}{60}\)\(=\dfrac{5}{3}\)
x = \(\dfrac{5}{3}\)
1) \(\dfrac{17}{5}\cdot\dfrac{-31}{125}\cdot\dfrac{1}{2}\cdot\dfrac{10}{17}\cdot\dfrac{-1}{2^3}\)
\(=\dfrac{17\cdot\left(-31\right)\cdot1\cdot2\cdot5\cdot\left(-1\right)}{5\cdot125\cdot2\cdot17\cdot8}\)
\(=\dfrac{\left(-31\right)\left(-1\right)}{125\cdot8}\\ =\dfrac{31}{1000}\)
a: 51/56=1-5/56
61/66=1-5/66
mà -5/56<-5/66
nên 51/56<61/66
b: 41/43<1<172/165
c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)
Ta có \(\left(\dfrac{1}{x}\right)^2=\dfrac{1}{125}\Rightarrow\dfrac{1}{x}=\sqrt{\dfrac{1}{125}}=\dfrac{1}{\sqrt{125}}\)
=>x=\(\sqrt{125}\)
cho mk sửa lại
tacó:
\(\dfrac{-64}{125}=\left(\dfrac{-4}{5}\right)^3\)
suy ra\(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-4}{5}\)
\(\dfrac{3}{5}x=\dfrac{22}{15}\)
\(x=\dfrac{22}{15}:\dfrac{3}{5}\)
\(x=\dfrac{22}{9}\)
ta có:
\(\dfrac{-64}{125}=\left(\dfrac{-16}{5}\right)^3\)
suy ra \(\dfrac{2}{3}-\dfrac{3}{5}x=\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{2}{3}-\dfrac{-16}{5}\)
\(\dfrac{3}{5}x=\dfrac{58}{15}\)
\(x=\dfrac{58}{15}:\dfrac{3}{5}\)
\(x=\dfrac{58}{9}\)
3) \(11\dfrac{1}{4}-\left(2\dfrac{5}{7}+5\dfrac{1}{4}\right)\)
\(=\dfrac{45}{4}-\left(7+\dfrac{27}{28}\right)\)
\(=\dfrac{45}{4}-7\dfrac{27}{28}\)
\(=\dfrac{45}{4}-\dfrac{223}{28}\)
\(=\dfrac{23}{7}\)
4) \(\dfrac{11}{125}-\dfrac{17}{18}-\dfrac{5}{7}+\dfrac{4}{9}+\dfrac{17}{14}\)
\(=\dfrac{1386-14875-11250+7000-19125}{15750}\)
\(=-\dfrac{2048}{875}\)
\(A=\left(\dfrac{5.5^3}{125^2.49}\right)^{15}:\left(\dfrac{5^6}{434}\right)^7\)
\(=\left(\dfrac{5^4}{5^6.7^2}\right)^{15}.\dfrac{434^7}{5^{42}}\)
\(=\left(\dfrac{1}{5^2.7^2}\right)^{15}.\dfrac{434^7}{5^{42}}\)
\(=\dfrac{62^7.7^7}{5^{30}.7^{30}.5^{42}}\)
\(=\dfrac{62^7}{5^{72}.7^{23}}\)
\(=125\left(\dfrac{1}{93}+\dfrac{1}{43}\right)=125\cdot\dfrac{136}{3999}=\dfrac{17000}{3999}\)