Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{3}{2.4}+\dfrac{3}{4.6}+\dfrac{3}{6.8}+...+\dfrac{3}{98.100}\)
\(=\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
\(=\dfrac{3}{2}.\dfrac{49}{100}=\dfrac{147}{200}\)
\(D=\dfrac{3}{2\cdot4}+\dfrac{3}{4\cdot6}+\dfrac{3}{6\cdot8}+...+\dfrac{3}{98\cdot100}\\ =\dfrac{3}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{3}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\\ =\dfrac{3}{2}\cdot\dfrac{49}{100}\\ =\dfrac{147}{200}\)
A=\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{20\cdot22}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{20}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{11}{22}-\dfrac{1}{22}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{5}{11}\)
\(=\dfrac{5}{22}\)
B = \(\dfrac{12}{\left(2.4\right)^2}+\dfrac{20}{\left(4.6\right)^2}+...+\dfrac{388}{\left(96.98\right)^2}+\dfrac{396}{\left(98.100\right)^2}\)
= \(\dfrac{4^2-2^2}{2^{2^{ }}.4^{2^{ }}}+\dfrac{6^{2^{ }}-4^2}{4^2.6^2}+...+\dfrac{98^2-96^2}{96^2.98^2}+\dfrac{100^2-98^2}{98^2.100^2}\)
=\(\dfrac{1}{2^{2^{ }}}-\dfrac{1}{4^{2^{ }}}+\dfrac{1}{4^2}-\dfrac{1}{6^2}+\dfrac{1}{6^2}+....-\dfrac{1}{98^2}+\dfrac{1}{98^2}-\dfrac{1}{100^2}\)
= \(\dfrac{1}{2^2}-\dfrac{1}{100^2}=\dfrac{1}{4}-\dfrac{1}{100^2}< \dfrac{1}{4}\)
Vậy B < \(\dfrac{1}{4}\)
B = 12(2.4)2+20(4.6)2+...+388(96.98)2+396(98.100)212(2.4)2+20(4.6)2+...+388(96.98)2+396(98.100)2
= 42−2222.42+62−4242.62+...+982−962962.982+1002−982982.100242−2222.42+62−4242.62+...+982−962962.982+1002−982982.1002
=122−142+142−162+162+....−1982+1982−11002122−142+142−162+162+....−1982+1982−11002
= 122−11002=14−11002<14122−11002=14−11002<14
Vậy B < 14
\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{7\cdot9}+\dfrac{1}{6\cdot8}\)
\(=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{7\cdot9}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{7\cdot9}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{9}{9}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{4}{8}-\dfrac{1}{8}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{8}{9}+\dfrac{1}{2}\cdot\dfrac{3}{8}\)
\(=\dfrac{1}{2}\left(\dfrac{8}{9}+\dfrac{3}{8}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{64}{72}+\dfrac{27}{72}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{91}{72}\)
\(=\dfrac{91}{144}\)
S=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{6.8}\)
S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{2}+...+\dfrac{1}{6}-\dfrac{1}{8}\right)\)
S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{8}\right)\)
S=\(\dfrac{1}{2}.\left(\dfrac{8-1}{8}\right)\)
S=\(\dfrac{1}{2}.\dfrac{7}{8}\)
S=\(\dfrac{7}{16}\)
Đặt A=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{98.100}\)
A=\(\left(\dfrac{1}{1.3}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+...+\dfrac{1}{98.100}\right)\)
A=\(\left(\dfrac{1}{1}-\dfrac{1}{99}\right)+\left(\dfrac{1}{2}-\dfrac{1}{100}\right)\)
A=\(\dfrac{98}{99}-\dfrac{49}{100}\)
A=\(\dfrac{4949}{9900}\)
Mà \(\dfrac{3}{4}=\dfrac{7425}{9900}\)
Vậy A<\(\dfrac{3}{4}\)
2
a. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{2}-\dfrac{1}{100}\)
=\(\dfrac{49}{100}\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{48.50}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{48.50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{50-48}{48.50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{48}-\dfrac{1}{50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{50}\right)\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{24}{50}=\dfrac{6}{25}\)
\(S=\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)
\(S=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}\right)-\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}\right)\)\(S=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}\right)-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{10}\right)\)\(S=\left(1-\dfrac{1}{9}\right)-\left(1-\dfrac{1}{10}\right)\)
\(S=\dfrac{8}{9}-\dfrac{9}{10}=\dfrac{-1}{10}\)
a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018
A = 1 - 1/2018 = 2017/2018
b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)
B= 5/2 . ( 1/2 - 1/ 2018 )
B = 504/1009
c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33
C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33
C = 1/3 - 1/33
C= 10/33
phan B mk quên nhân với 5/2
lấy 5/2 . 504/1009 = 1260/1009
=1/2 - 1/4 + 1/4 - 1/6 + ... + 1/98 - 1/100
=1/2 - 1/100 = 49/100
1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/96 - 1/98 + 1/98 - 1/100
= 1/2 - 1/100
= 49/100