K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH
Thầy Hùng Olm
Manager VIP
28 tháng 5 2024

\(\dfrac{12}{1.5}=3.\left(1-\dfrac{1}{5}\right)\)

\(\dfrac{12}{5.9}=3.\left(\dfrac{1}{5}-\dfrac{1}{9}\right)\)

\(\dfrac{12}{9.13}=3.\left(\dfrac{1}{9}-\dfrac{1}{13}\right)\)

\(S=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)

S =\(3.\left(1-\dfrac{1}{101}\right)=\dfrac{300}{101}\)

8 tháng 4 2018

a)

\(P=\dfrac{5}{6}+\dfrac{5}{12}+\dfrac{5}{20}+\dfrac{5}{30}+\dfrac{5}{42}+\dfrac{5}{56}+\dfrac{5}{72}+\dfrac{5}{90}\\ =\dfrac{5}{2.3}+\dfrac{5}{3.4}+\dfrac{5}{4.5}+\dfrac{5}{5.6}+\dfrac{5}{6.7}+\dfrac{5}{7.8}+\dfrac{5}{8.9}+\dfrac{5}{9.10}\\ \Rightarrow\dfrac{1}{5}P=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\\ =\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\\ =\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{5}{10}-\dfrac{1}{10}\\ =\dfrac{4}{10}=\dfrac{2}{5}\\ \Rightarrow P=\dfrac{2}{5}\cdot5=2\)

29 tháng 3 2017

\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)

\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)

\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)

\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).

29 tháng 3 2017

Đề sai

29 tháng 3 2017

Tìm x

\(\dfrac{x}{5}\)=\(\dfrac{x+6}{15}\)

\(\Rightarrow\)\(\dfrac{3x}{15}\)=\(\dfrac{x+6}{15}\)

\(\Rightarrow\)3x = x+6

\(\Rightarrow\)2x=6

\(\Rightarrow\)x=3

TÍNH TỔNG S

S=\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)

S=\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}\)

S= \(1-\dfrac{1}{21}\)

S= \(\dfrac{20}{21}\)

29 tháng 3 2017

Tìm x:

\(\dfrac{x}{5}=\dfrac{x+6}{15}=>\dfrac{3x}{15}=\dfrac{x+6}{15}\)

=> 3x = 6 + x

=> 2x = 6

=> x = 3

Tính tổng S:

\(S=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)

\(S=\dfrac{4}{1}-\dfrac{4}{5}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{4}{9}-\dfrac{4}{13}+...+\dfrac{4}{17}-\dfrac{4}{21}\)

\(S=4-\dfrac{4}{21}\)

\(S=\dfrac{80}{21}\)

22 tháng 3 2017

Gọi \(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\) là A

Ta sẽ tính biểu thức A.\(\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=A.\(\left(\dfrac{7}{12}-\dfrac{7}{12}\right)=0\)

Vậy \(\left(\dfrac{12}{23}+\dfrac{12}{2323}-\dfrac{121212}{232323}\right).\left(\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{7}{12}\right)\)=0

22 tháng 3 2017

\(=81.\dfrac{12.\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4.\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5.\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6.\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}.\dfrac{158}{711}\)

\(=81.\dfrac{12}{4}:\dfrac{5}{6}.\dfrac{2}{9}\)

\(=243:\dfrac{5}{6}.\dfrac{2}{9}\)

\(=\dfrac{1458}{5}.\dfrac{2}{9}\)

\(=\dfrac{324}{5}\)

3 tháng 8 2017

a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0

<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân

21 tháng 7 2017

+) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(\Rightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(\Rightarrow2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(\Rightarrow A=1-\dfrac{1}{2^{10}}=\dfrac{2^{10}-1}{2^{10}}\)

Vậy \(A=\dfrac{2^{10}-1}{2^{10}}\)

+) \(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(\Rightarrow\dfrac{1}{2}F=\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+...+\dfrac{1}{380}\)

\(=\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{20}\)

\(=\dfrac{1}{5}-\dfrac{1}{20}=\dfrac{3}{20}\Rightarrow F=\dfrac{3}{20}:\dfrac{1}{2}=\dfrac{3}{10}\)

Vậy \(F=\dfrac{3}{10}\)

+) \(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}=\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}.\left(\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{25.28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\left(\dfrac{1}{4}-\dfrac{1}{28}\right)=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

Vậy \(G=\dfrac{2}{7}\)

21 tháng 7 2017

\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\)

\(2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\)

\(2A-A=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{10}}\right)\)

\(A=1-\dfrac{1}{2^{10}}=\dfrac{1024-1}{1024}=\dfrac{1023}{1024}\)

\(F=\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+...+\dfrac{1}{190}\)

\(=\dfrac{2}{30}+\dfrac{2}{42}+\dfrac{2}{56}+...+\dfrac{2}{380}\)

\(=\dfrac{2}{5.6}+\dfrac{2}{6.7}+\dfrac{2}{7.8}+...+\dfrac{2}{19.20}\)

\(=2\left(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{19.20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=2\left(\dfrac{1}{5}-\dfrac{1}{20}\right)=2.\dfrac{3}{20}=\dfrac{3}{10}\)

\(G=\dfrac{12}{84}+\dfrac{12}{210}+\dfrac{12}{390}+...+\dfrac{12}{2100}\)

\(=\dfrac{4}{28}+\dfrac{4}{70}+\dfrac{4}{130}+...+\dfrac{4}{700}\)

\(=\dfrac{4}{4.7}+\dfrac{4}{7.10}+\dfrac{4}{10.13}+...+\dfrac{4}{25.28}\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{25}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}\left(\dfrac{1}{4}-\dfrac{1}{28}\right)\)

\(=\dfrac{4}{3}.\dfrac{3}{14}=\dfrac{2}{7}\)

12 tháng 6 2017

\(1,\)

\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}\)

\(=\dfrac{3^4.5^2.3^8.2^5.5^5}{5^5.3^7.2^5.3^{10}}\)

\(=\dfrac{3^{12}.2^5.5^7}{5^5.3^{17}.2^5}\)

\(=\dfrac{1.5^2}{3^5.1}\)

\(=\dfrac{25}{243}\)

\(2,\)

\(\dfrac{4^5.9^4+2.6^9}{2^{10}.3^8+6^8.20}\)

\(=\dfrac{2^{10}.3^8+2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)

\(=\dfrac{2^{10}.3^8+2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)

\(=\dfrac{2^{10}.3^8.4}{2^{10}.3^8.6}\)

\(=\dfrac{2^{12}.3^8}{2^{11}.3^9}\)

\(=\dfrac{2}{3}\)

\(3,\)

\(\dfrac{15.3^{11}+4.27^4}{9^7}\)

\(=\dfrac{3.5.3^{11}+2^2.3^{12}}{3^{14}}\)

\(=\dfrac{5.3^{12}+2^2.3^{12}}{3^{14}}\)

\(=\dfrac{3^{12}\left(5+2^2\right)}{3^{14}}\)

\(=\dfrac{3^{12}.9}{3^{14}}\)

\(=\dfrac{3^{14}}{3^{14}}\)

\(=1\)

\(4,\)

\(\dfrac{4^7.2^8}{3.2^{15}.16^2-5^2\left(2^{10}\right)^2}\)

\(=\dfrac{2^{22}}{3.2^{23}-5^2.2^{20}}\)

\(=\dfrac{2^{22}}{2^{20}.\left(-1\right)}\)

\(=\dfrac{2^{22}}{-2^{20}}\)

\(=-4\)

* Mấy bài còn lại tương tự đấy bạn tự làm đi

Mình mỏi tay lắm rồi

12 tháng 6 2017

P/s:khuyến khích tự làm,chỉ làm mẫu 1 câu:

1)\(\dfrac{45^2.3^8.10^5}{5^5.3^7.18^5}=\dfrac{\left(5.9\right)^2.3.3^7.\left(2.5\right)^5}{5^5.3^7.\left(2.9\right)^5}\)\(=\dfrac{5^2.9^2.3.3^7.2^5.5^5}{5^5.3^7.2^5.9^5}\)\(=\dfrac{5^2.9^2.3.1.1.1}{1.1.1.9^5}\)\(=\dfrac{5^2.9^2.3}{9^5}=\dfrac{5^2.9^2.3}{9^2.9^3}=\dfrac{5^2.3}{9^3}=\dfrac{75}{729}=\dfrac{25}{243}\)

\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(-\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(-\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(-\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(-\dfrac{1}{14}+\dfrac{1}{14}\right)+\left(-\dfrac{1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\\ =\dfrac{1}{16}\)

22 tháng 3 2017

Tính nhanh :

\(\dfrac{1}{10}+\dfrac{-1}{11}+\dfrac{1}{12}+\dfrac{-1}{13}+\dfrac{1}{14}+\dfrac{-1}{15}+\dfrac{1}{16}+\dfrac{-1}{10}+\dfrac{1}{11}+\dfrac{-1}{12}+\dfrac{1}{13}+\dfrac{-1}{14}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(\dfrac{-1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{-1}{12}\right)+\left(\dfrac{-1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{14}+\dfrac{-1}{14}\right)\)

\(+\left(\dfrac{-1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\)

\(=0+0+...+0+\dfrac{1}{16}\)

\(=\dfrac{1}{16}\)

4 tháng 8 2017

Bài 1: Tính ( hợp lý nếu có thể )

\(A=\dfrac{-3}{8}+\dfrac{12}{25}+\dfrac{5}{-8}+\dfrac{2}{-5}+\dfrac{13}{25}\)

\(=\left(\dfrac{-3}{8}+\dfrac{5}{-8}\right)+\left(\dfrac{12}{25}+\dfrac{13}{25}\right)+\dfrac{2}{-5}\)

\(=-1+1+\dfrac{2}{-5}\)

\(=0+\dfrac{2}{-5}\)

\(=\dfrac{2}{-5}\)

\(B=\dfrac{-3}{15}+\left(\dfrac{2}{3}+\dfrac{3}{15}\right)\)

\(=\left(\dfrac{-3}{15}+\dfrac{3}{15}\right)+\dfrac{2}{3}\)

\(=0+\dfrac{2}{3}\)

\(=\dfrac{2}{3}\)

\(C=\dfrac{-5}{21}+\left(\dfrac{-16}{21}+1\right)\)

\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)

\(=-1+1\)

\(=0\)

\(D=\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

\(=\left(\dfrac{5}{-12}+\dfrac{7}{12}\right)+\dfrac{-1}{6}\)

\(=\dfrac{1}{6}+\dfrac{-1}{6}\)

\(=0\)

4 tháng 8 2017

Bài 2: Tìm x,biết:

a) \(x+\dfrac{2}{3}=\dfrac{4}{5}\)

\(x=\dfrac{4}{5}-\dfrac{2}{3}\)

\(x=\dfrac{2}{15}\)

Vậy \(x=\dfrac{2}{15}\)

b) \(x-\dfrac{2}{3}=\dfrac{7}{21}\)

\(\Rightarrow x-\dfrac{2}{3}=\dfrac{1}{3}\)

\(x=\dfrac{1}{3}+\dfrac{2}{3}\)

\(x=\dfrac{3}{3}=1\)

Vậy \(x=1\)

c) sai đề hay sao ấy bạn.bỏ dấu - ở x thì đúng đề.mk giải luôn nha!

\(x-\dfrac{3}{4}=\dfrac{-8}{11}\)

\(x=\dfrac{-8}{11}+\dfrac{3}{4}\)

\(x=\dfrac{1}{44}\)

Vậy \(x=\dfrac{1}{44}\)

d) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{2}{5}\)

\(x=-\dfrac{3}{20}\)

Vậy \(x=-\dfrac{3}{20}\)