Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có : \(\dfrac{1}{2010}>0\) và \(\dfrac{-7}{19}< 0\) \(\Leftrightarrow\dfrac{1}{2010}>\dfrac{-7}{19}\) vậy \(\dfrac{1}{2010}>\dfrac{-7}{19}\)
b) ta có : \(497< 499\Rightarrow\dfrac{497}{499}< 1\Leftrightarrow\dfrac{497}{-499}>-1\) (1)
ta có : \(2345>2341\Rightarrow\dfrac{2345}{2341}>1\Leftrightarrow\dfrac{-2345}{2341}< -1\) (2)
từ (1) và (2) ta có \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\) vậy \(\dfrac{497}{-499}>\dfrac{-2345}{2341}\)
a/ Ta có :
\(\dfrac{1}{2017}>0\)
\(-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{1}{2017}>\dfrac{-1}{2}\)
b/ \(\dfrac{499}{-497}< -1\)
\(\dfrac{-23456}{23456}=-1\)
\(\Leftrightarrow\dfrac{-497}{499}< \dfrac{-23456}{23456}\)
a, Ta có \(\dfrac{1}{2017}>0\)
\(-\dfrac{1}{2}< 0\)
<=>\(\dfrac{1}{2017}>\left(\dfrac{-1}{2}\right)\)
b,\(\dfrac{499}{-497}>\left(-1\right)\)
=>\(\dfrac{-23456}{23456}=-1\)
<=>\(\dfrac{-497}{499}< \dfrac{-23456}{23456}\)
Chúc Bạn Học Tốt!!!
a) \(1\dfrac{4}{23}+\dfrac{5}{21}-\dfrac{4}{23}+0,5+\dfrac{16}{21}=\left(1\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{5}{21}+\dfrac{16}{21}\right)+0,5=1+1+0,5=2,5\)b)
\(\dfrac{3}{7}.19\dfrac{1}{3}-\dfrac{7}{7}.33\dfrac{1}{3}=\dfrac{7}{3}\left(19\dfrac{1}{3}-33\dfrac{1}{3}\right)=\dfrac{7}{3}.\left(-14\right)=-\dfrac{1}{6}\)
c,
\(\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{5}{7}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-5}{7}\right)=\left(15\dfrac{1}{4}+2010\right):\left(-\dfrac{7}{5}\right)-\left(25\dfrac{1}{4}+2016\right):\left(\dfrac{-7}{5}\right)\)
\(\left(-\dfrac{7}{5}\right)\left(15\dfrac{1}{4}+2010-25\dfrac{1}{4}-2016\right)=\left(-\dfrac{7}{5}\right)\left(-10-6\right)=22,4\)
d,
\(\left(2017-\dfrac{3}{7}+\dfrac{9}{11}\right)-\left(2016-\dfrac{3}{7}+\dfrac{8}{17}\right)-\left(2015+\dfrac{9}{11}-\dfrac{8}{17}\right)=2017-\dfrac{3}{7}+\dfrac{9}{11}-2016+\dfrac{3}{7}-\dfrac{8}{17}-2015-\dfrac{9}{11}+\dfrac{8}{17}\)\(\left(2017-2016-2015\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(-\dfrac{8}{17}+\dfrac{8}{17}\right)=-2014\)
Bạn ơi cho mình hỏi tại sao đề bài câu c là -5/7 mà bn lm -7/5
a) \(\frac{1}{2010}\)và \(\frac{-7}{19}\)
Ta có : \(\frac{1}{2010}>0>\frac{-7}{19}\)
\(\Rightarrow\frac{1}{2010}>\frac{-7}{19}\)
b)\(\frac{497}{-499}\)và \(\frac{-2345}{2341}\)
Ta có : \(\frac{497}{-499}< -1< \frac{-2345}{2341}\)
\(\Rightarrow\frac{497}{-499}>\frac{-2345}{2341}\)
c)\(\frac{2000}{2001}\)và \(\frac{2001}{2002}\)
Ta có : \(\frac{2000}{2001}=1-\frac{1}{2001};\frac{2001}{2002}=1-\frac{1}{2002}\)
mà \(\frac{1}{2001}>\frac{1}{2002}\Rightarrow1-\frac{1}{2001}< 1-\frac{1}{2002}\)
\(\Rightarrow\frac{2000}{2001}< \frac{2001}{2002}\)
1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)
\(\dfrac{2010}{a}=1\Rightarrow a=2010\);
\(\dfrac{c}{2010}=1\Rightarrow c=2010\);
\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).
Vậy (a, b, c) = (2010; 2010; 2010)
3)
a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)
Có: \(\sqrt{x+24}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)
\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)
Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)
b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)
Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)
\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)
\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)
\(\Rightarrow2x+\dfrac{4}{13}=0\)
\(\Rightarrow2x=-\dfrac{4}{13}\)
\(\Rightarrow x=-\dfrac{2}{13}\)
Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)
4)
a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)
Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)
\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)
\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)
\(\Rightarrow x+\dfrac{5}{41}=0\)
\(\Rightarrow x=-\dfrac{5}{41}\)
Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)
b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)
Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)
\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)
\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)
\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(\Rightarrow x=\dfrac{2}{3}\)
Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)