Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=2\sqrt{5}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}-2}{1-\sqrt{5}}=\dfrac{-2\left(1-\sqrt{5}\right)}{1-\sqrt{5}}=-2\) \(b.\dfrac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{30}+\sqrt{162}}=\dfrac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6.5}+\sqrt{27.6}}=\dfrac{\sqrt{2}\left(4-\sqrt{6}\right)}{\sqrt{3}\left(\sqrt{6}-4\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{17}\right)}=-\dfrac{\sqrt{2}}{\sqrt{3}}-\dfrac{1}{\sqrt{6}}=\dfrac{-2-1}{\sqrt{6}}=-\dfrac{\sqrt{3}}{\sqrt{2}}\)
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2\left(\sqrt{5}+1\right)\)
\(=2\sqrt{5}-2\sqrt{5}-2=-2\)
c: \(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}=4\)
d: \(=\dfrac{\sqrt{6-2\sqrt{5}}\cdot\left(3+\sqrt{5}\right)}{2\sqrt{5}+2}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8}{\sqrt{5}-1}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
=-2
c: \(=\dfrac{\sqrt{4}\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{\sqrt{5}+\sqrt{27}}{\sqrt{6}\left(\sqrt{5}+\sqrt{27}\right)}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{\sqrt{6}}{2}\)
3.
Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)
\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)
\(=16\ne VP\)
⇒ Đề sai
1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18
⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18
⇌\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3
⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3
⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)
Vậy không tìm được giá trị x thỏa mãn bài toán
2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)
=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)
hình như đề sai
a) \(=\left|\sqrt{3}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=3-\sqrt{3}+\sqrt{3}-1=2\)
b) \(=\dfrac{\sqrt{5}+2}{5-4}-\dfrac{\sqrt{5}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{5}+2-\sqrt{5}=2\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{\left(10+2\sqrt{10}\right)\left(\sqrt{5}-\sqrt{2}\right)}{3}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}\)
\(=\dfrac{10\sqrt{5}-10\sqrt{2}+2\sqrt{50}-2\sqrt{20}}{3}+\left[-2\left(1+\sqrt{5}\right)\right]\)
\(=\dfrac{10\sqrt{5}-10\sqrt{2}+10\sqrt{2}-2\sqrt{20}}{3}+\left[-2-2\sqrt{5}\right]\)
\(=\dfrac{10\sqrt{5}-4\sqrt{5}}{3}-2-2\sqrt{5}\)
\(=\dfrac{6\sqrt{5}}{3}-2-2\sqrt{5}\)
\(=2\sqrt{5}-2-2\sqrt{5}\)
\(=-2\)
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}=2\sqrt{5}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=2\sqrt{5}-2-2\sqrt{5}=-2\)
Vậy \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=-2\)
a: \(=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=4\sqrt{5}\)
b: \(=2\sqrt{5}-2-2\sqrt{5}=-2\)
c: \(=3-\sqrt{6}+2\sqrt{6}-3=\sqrt{6}\)
d: \(=\dfrac{2\left(2\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{3}-2\sqrt{2}\right)}-\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{\sqrt{6}}=-\dfrac{3\sqrt{6}}{6}=-\dfrac{\sqrt{6}}{2}\)
e: \(=\dfrac{8}{3}\sqrt{3}-\dfrac{1}{3}\sqrt{3}-\dfrac{4}{5}\sqrt{3}=\dfrac{23}{15}\sqrt{3}\)
a)\(A=\sqrt{2}-\sqrt{12-8\sqrt{2}}\)
\(A=\sqrt{2}-\sqrt{\left(2\sqrt{2}-2\right)^2}\)
\(A=\sqrt{2}-2\sqrt{2}+2\)
\(A=2-\sqrt{2}\)
c)\(C=\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{10}-\sqrt{2}}=\dfrac{2\sqrt{3-\sqrt{5}}}{\sqrt{2}\left(\sqrt{5}-1\right)}=\dfrac{\sqrt{2}\sqrt{3-\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{6-2\sqrt{5}}}{\sqrt{5}-1}=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{5}-1}=\dfrac{\sqrt{5}-1}{\sqrt{5}-1}=1\)
d)với x,y,x>0 xyz=100 =>\(\sqrt{xyz}=\sqrt{100}=10\)
\(D=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{10\sqrt{z}}{\sqrt{xz}+10\sqrt{z}+10}\)
\(D=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+\sqrt{xyz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz^2}}{\sqrt{xz}+\sqrt{xyz^2}+\sqrt{xyz}}\)
\(D=\dfrac{1}{\sqrt{y}+1+\sqrt{yz}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{1+\sqrt{yz}+\sqrt{y}}\)
\(D=\dfrac{1+\sqrt{y}+\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=1\)
mình chỉ giải được câu a,c,d còn câu b mình nghĩ sai đề
\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\) = \(\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{-\dfrac{4}{1+\sqrt{5}}}\) = \(2\sqrt{5}-2\left(1+\sqrt{5}\right)\) = -2.