K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

tự vẽ hình nha

a)Xét tam giác vuông IMA và tam giác vuông IQA có

góc A1=góc A2(AI là tia phân giác góc A)

AI chung

\(\Rightarrow\)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)

b)\(\Delta IMA=\Delta IQA\left(ch-gn\right)\)

nên IM=IQ

27 tháng 12 2017

Không có văn bản thay thế tự động nào.

10 tháng 12 2016

Kí hiệu tam giác viết là t/g nhé

a) BI là phân giác ABC nên ABI = CBI

Xét t/g BID vuông tại D và t/g BIF vuông tại F có:

BI là cạnh chung

DBI = FBI (cmt)

Do đó, t/g BID = t/g BIF ( cạnh góc vuông và góc nhọn kề) (đpcm)

b) t/g BID = t/g BIF (câu a) => ID = IF (2 cạnh tương ứng) (1)

C/m tương tự câu a ta cũng có: t/g ADI = t/g AEI ( cạnh góc vuông và góc nhọn kề)

=> ID = IE (2 cạnh tương ứng)

Từ (1) và (2) => ID = IE = IF (đpcm)

 

10 tháng 12 2016

ban tu ve hinh nhengaingungngaingung

a) Xet tam giac BID va tam giac BIF co:

BI:canh chung

goc DBI=goc IBF(vi tia BI la tia phan giac cua goc DBF)

goc BDI=goc BFI(=90do)

Vay tam giac BID=tam giac BIF(canh huyen, goc nhon)

b) Vi tam giac BID=tam giac BIF(cau a)

Nen ID=IF(2 canh tuong ung) (1)

Xet tam giac AID va tam giac AIE co:

AI:canh chung

goc DAI=goc EAI(vi tia AI la tia phan giac cua goc DAE)

goc ADI=goc AEI(=90do)

Nen tam giac AID=tam giac AIE(canh huyen,goc nhon)

Suy ra:ID=IE(2 canh ung) (2)

Tu (1), (2)\(\Rightarrow\) IF=ID=IE

Chuc ban ngay cang hoc gioi len nheokok

Hen gap lai ban vao dip khac nheok
 

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

26 tháng 2 2018

A B C H D E

a) Xét \(\Delta ABC\) có :

AB = AC (gt)

=> \(\Delta ABC\) cân tại A

\(\Delta ABH,\Delta ACH\) có :

\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)

\(AB=AC\left(gt\right)\)

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)

=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)

b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :

\(AH^2=AB^2-BH^2\) (Định lí PITAGO)

=> \(AH^2=5^2-4^2=9\)

=> \(AH=\sqrt{9}=3\left(cm\right)\)

c) Xét \(\Delta DBH,\Delta ECH\) có :

\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)

\(BH=CH\)(cm câu a)

\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)

=> ​\(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)

=> \(HD=HC\) (2 cạnh tương ứng)

=> \(\Delta HDE\) cân tại H.

15 tháng 5 2019

a) xét 2 tam giác vuông AIB và AIC có:

            AI cạnh chung

          AB=AC(gt)

=> tam giác AIB=tam giác AIC(cạnh huyền-cạnh góc vuông)

=> IB=IC=> I là trung điểm của BC

b) xét 2 tam giác vuông MIB và NIC có:

      IB=IC(theo câu a)

      \(\widehat{B}\)=\(\widehat{C}\)(gt)

=> tam giác MIB =tam giác NIC(CH-GN)

=> MB=NC mà AB=AC=> AM=AN

=> tam giác AMN cân tại A

c)

A B C I M N K

25 tháng 12 2018

Xét tg AHB và tg AHC,ta có:

AH chung

gBAH=gCAH(tia phân giác của góc A cắt BC tại H)

AB=AC(gt)

=>tg AHB =tg AHC(c-g-c)

Xét tg ABC,có:AB=AC (gt)

=>tg ABC cân tại A

mà AH là tia phân giác

=>AH là đường cao

=>AH vuông góc vs BC

Ta có:g BAH+g ABH=g AHB=90*

và gDHB+gDBH=gBDH=90*

=>góc HAB = góc BHD

25 tháng 12 2018

gợi ý phần c

gọi F là giao điểm của AH và DE

Xét tg ADH và tg AEH,có

AH chung

ADH=AEH=90

DAH=EAH

=>tg ADH =tg AEH(ch-gn)

=>AD=AE

=>tg ADE cân tại A

mà AF là tia phân giác

=>AF vuông góc vs DE

ta có BHF=EFH=90

=>DE//BC

p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.

4 tháng 3 2018

A B H C M N

4 tháng 3 2018

Xét tam giác ABH và tam giác ACH có

Góc ABH = ACH (gt)

Có góc AHB = AHC = 90

AB = AC (gt)

=> Tam giác ABH= ACH ( cạnh huyền - góc nhọn )