Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_L=\omega L=100\Omega\)
Biến trở R thay đổi để \(P_R\) max khi \(R=Z_L\)
\(\Rightarrow R=100\Omega\)
Cường độ dòng điện: \(I=\frac{U}{Z}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{100\sqrt{2}}{\sqrt{100^2+100^2}}=1A\)
Tốc độ góc \(\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{20}{0,2}}=10\left(rad/s\right)\)
Lại có \(A=\sqrt{\frac{v^2}{\omega^2}+\frac{a^2}{\omega^4}}=\sqrt{\frac{20^2}{10^2}+\frac{\left(2\sqrt{3}.100\right)^2}{10^4}}=4\left(cm\right)\)
một con lắc lò xo dao động điều hòa có thời gian ngắn nhất khi chuyển động từ vị trí biên này sang biên kia là 1s, lò xo có độ cứng k=100N/m, khối lượng vật nặng có giá trị (cho π2 = 10)
A 0.625 kg
B 2.5 kg
C 0.25 kg
D 0.0625kg
một con lắc lò xo dao động điều hòa có thời gian ngắn nhất khi chuyển động từ vị trí biên này sang biên kia là 1s, lò xo có độ cứng k=100N/m, khối lượng vật nặng có giá trị (cho π2 = 10)
A 0.625 kg
B 2.5 kg
C 0.25 kg
D 0.0625kg
Vận tốc của hai vật sau va chạm: (M + m)V = mv
=> V = 0,02\(\sqrt{2}\) (m/s)
Tọa độ ban đầu của hệ hai vật x0 = \(\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}\) = 0,04m = 4cm
\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2+\left(M+m\right)}{k}=0,0016\Rightarrow A=0,04m=4cm\)
→ B
Vận tốc của hai vật sau va chạm: \(\left(M+m\right)V=mv\)
\(\rightarrow V=0,02\sqrt{2}\left(m\text{ /}s\right)\)
Tọa độ ban đầu của hệ hai vật: \(x_0=\frac{\left(M+m-M\right)g}{k}=\frac{mg}{k}=0,04m=4cm\)
\(A^2=x_0^2+\frac{V^2}{\omega^2}=x_0^2+\frac{V^2\left(M+m\right)}{k}=0,0016\) \(\rightarrow A=0,04m=4cm\)
Đáp án B
Ta có Um không đổi và để UAm luôn không đổ vs mọi gtri của R thì : Um=UAm hay ZL=2ZC =2.100=200 → L=2/π ( D)
Sử dụng hình vẽ suy luận cho nhanh : R ZL ZC UAm Um