Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
Bài 1:
\(\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=3-\frac{5}{3n+2}\in Z\)
\(\Rightarrow5⋮3n+2\)
\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow3n\in\left\{-1;-3;3;-7\right\}\)
Vì \(n\in Z\) suy ra \(n\in\left\{-1;1\right\}\)
Bài 3:
\(\frac{n^2+4n-2}{n+3}=\frac{n\left(n+3\right)+n-2}{n+3}=\frac{n\left(n+3\right)}{n+3}+\frac{n-2}{n+3}=n+\frac{n-2}{n+3}\in Z\)
\(\Rightarrow n-2⋮n+3\)
\(\Rightarrow\frac{n-2}{n+3}=\frac{n+3-5}{n+3}=\frac{n+3}{n+3}-\frac{5}{n+3}=1-\frac{5}{n+3}\in Z\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{-2;-4;2;-8\right\}\)
* ∈ 2 , 4 , 6 , 8