Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi dung kháng là $100 \Omega$ thì công suất tiêu thụ của đoạn mạch là cực đại bằng 100 W nên
\(\begin{cases} Z_L=Z_{C_1}=100 \Omega \\ P=\dfrac{U^2}{R} =100 W \end{cases}\)
Khi dung kháng là $200 \Omega$ thì điện áp hiệu dụng giữa hai đầu tụ điện là $100\sqrt{2} V$ nên
$U_{C_2}=\dfrac{U.Z_{C_2}}{Z}=\dfrac{200.U}{\sqrt{R^2+(100-200)^2}}=100\sqrt{2}$
$\Rightarrow 2U^2=R^2+100^2$
$\Rightarrow 2.100.R =R^2 +100^2$
$\Rightarrow R=100 \Omega$
Đáp án A
Tần số góc biến thiên để ULmaxnên ta có:
Khi tần số góc là w1thì :
Áp dụng định lý viet phương trình có hai nghiệm phân biệt thỏa mãn:
Áp dụng định lý viet phương trình có hai nghiệm phân biệt thỏa mãn
Đáp án A
Đáp án A
Điện áp hiệu dụng trên tụ điện:
→ Hai nghiệm ω 1 2 và ω 2 2 cho cùng một giá trị U C thỏa mãn ω 1 2 + ω 2 2 = 2 ω C 2
Đáp án B
Phương pháp: điều kiện cực trị khi tần số thay đổi.
Cách giải:
Khi tần số góc thay đổi thì có các giá trị để điện áp trên cuộn cảm hay tụ đạt cực đại. ta có:
Đáp án B
Phương pháp: Điều kiện cực trị khi tần số thay đổi.
Cách giải: Khi tần số góc thay đổi thì có các giá trị để điện áp trên cuộn cảm hay tụ đạt cực đại.
Ta có:
Và điện áp trên tụ cực đại là:
Dễ thấy:
Đáp án A
Phương pháp: sử dụng điều kiện cực đai của UL khi tần số góc biến đổi
Cách giải: Tần số góc biến thiên để ULmax nên ta có:
Đặt R 2 C 2 L = x ⇒ x = 1 4 Khi tần số góc là ω 1 thì:
Áp dụng định lý vi et phương trình có hai nghiệm phân biệt thỏa mãn:
Từ
Mặt khác ta lại có:
Biết tổng và tích ta tìm ra được
Vậy ω 1 = 10 2