Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo hai bài tương tự này nhé:
Câu hỏi của Nguyễn Khánh Quỳnh - Học và thi online với HOC24
Câu hỏi của Hue Le - Học và thi online với HOC24
Ta có: \(\dfrac{\pi x}{4}=\dfrac{2\pi x}{\lambda}\Rightarrow \lambda = 8cm\)
Chu kì: \(T=1s\)
Tốc độ truyền sóng: \(v=\dfrac{\lambda}{T}=8cm/s\)
Ta có : ADCT : \(I_0=U_0\sqrt{\frac{C}{L}}\) ( Từ công thức tính năng lượng điện từ trong mạch \(W=W_{Cmax}=W_{Lmax}\)
Nghĩa là :\(\frac{L.\left(I_0\right)^2}{2}=\frac{C.\left(U_0\right)^2}{2}\))
\(\Rightarrow I_0=5.\sqrt{\frac{8.10^{-9}}{2.10^{-4}}}=\text{0.0316227766}\left(A\right)\)\(\Rightarrow I=\frac{I_0}{\sqrt{2}}=\text{0.022360677977}\left(A\right)\)
Mà \(P=r.I^2\Rightarrow r=\frac{6.10^{-3}}{5.10^{-4}}=12\left(\Omega\right)\Rightarrow D\)
2 trường hợp cho cùng cường độ dòng nên kháng trong 2 trường hợp như nhau và ta đã biết quận không thuần cảm
\(\frac{1}{C\omega_1}-L\omega_1=L\omega_2-\frac{1}{C\omega_1}\)
\(LC\omega_1\omega_2=1\)
\(Z_{C_1}=\frac{1}{C\omega_1}=L\omega_2=Z_{L_2}=62,5\Omega\)
\(Z_{L_1}=40\Omega\)
\(Z=\frac{U}{I}\approx54,83\Omega\)
\(r=50\Omega\)
Cường độ dòng hiệu dụng cực đại sẽ là
\(I'=\frac{U}{r}=4A\)
Đáp án D
Gọi M là vị trí có điện trường bằng không: E 1 → + E 2 → = 0 ⇒ E 1 → = − E 2 →
E 1 → và E 2 → ngược chiều nên M nằm ngoài khoảng giữa q 1 q 2 ⇒ r 1 − r 2 = 8 c m ( 1 )
Độ lớn E 1 = E 2 ⇒ q 1 r 1 2 = q 2 r 2 2 ⇒ r 1 = 2 r 2 2
- Từ (1) và (2) ta có r 1 = 16 c m ; r 2 = 8 c m
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)