Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của đồ thị và đường thẳng là \(-x+m=\frac{x^2-1}{x}\)
\(\Leftrightarrow2x^2-mx-1=0\) (*) (vì x = 0 không là nghiệm của (*))
Vì ac < 0 nên phương trình (*) luôn có 2 nghiệm phân biệt khác không
Do đó đồ thị và đường thẳng luôn cắt nhau tại hai điểm phân biệt :
\(A\left(x_1;-x_1+m\right);B\left(x_2;-x_2+m\right)\)
\(AB=4\Leftrightarrow\sqrt{\left(x_2-x_1\right)^2+\left(-x_2+m+x_1+m\right)^2}=4\)
\(\Leftrightarrow2\left(x_2-x_1\right)^2=16\)
\(\Leftrightarrow\left(x_2+x_1\right)^2-4x_2x_1=8\)
Áp ụng định lý Viet ta có : \(\begin{cases}x_2+x_1=\frac{m}{2}\\x_2x_1=-\frac{1}{2}\end{cases}\)
\(AB=4\Leftrightarrow\frac{m^2}{4}+2=8\Leftrightarrow m=\pm2\sqrt{6}\)
Vậy \(m=\pm2\sqrt{6}\) là giá trị cần tìm
Ta có \(d:y=mx-m-2\)
Hoành độ giao điểm là nghiệm của phương trình :
\(\frac{x-3}{1-x}=mx-m-2\Leftrightarrow\begin{cases}x\ne1\\mx^2-\left(2m+1\right)x+m-1=0\end{cases}\)
Điều kiện để cắt nhau tại hai điểm phân biệt là : \(\begin{cases}m\ne0\\m>-\frac{1}{8}\end{cases}\)
Gọi \(M\left(x_1;y_1\right);N\left(x_2;y_2\right)\) khi đó \(\begin{cases}x_1+x_2=\frac{2m+1}{m}\\x_1x_2=\frac{m-1}{2}\end{cases}\)
Ta có \(\overrightarrow{AM}=-2\overrightarrow{AN}\Rightarrow x_1=3-2x_2\)
Từ đó ta có m = 1
Hoành độ giao điểm của d : y = mx+2 với (C) là nghiệm phương trình :
\(\begin{cases}x>0\\\log^2_2x-\log_2x^2-3\ge0\end{cases}\)
Dễ thấy với m = 0 thì (1) vô nghiệm. Đường thẳng d cắt (C) tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt khác -1. Điều kiện là
\(\begin{cases}\Delta>0\\m\left(-1\right)^2+m\left(-1\right)+3\ne0\end{cases}\) \(\Leftrightarrow m^2-12m>0\) \(\Leftrightarrow m<0\) hoặc m > 12 (*)
Với (*) giả sử x1, x2 là 2 nghiệm phân biệt của (1), khi đó tọa độ các giao điểm là :
\(A\left(x_1;mx_1+2\right);B\left(x_2;mx_2+2\right)\)
Dễ thất điểm O không thuộc d nên ABO là một tam giác.
Tam giác ABO vuông tại O khi và chỉ khi :
\(\overrightarrow{OA}.\overrightarrow{OB}=0\Leftrightarrow\left(1+m^2\right)x_1x_2+2m\left(x_1+x_2\right)+4=0\)
Áp dụng định lí Viet ta có : \(x_1+x_2=-1;x_1x_2=\frac{3}{m}\)
Thay vào trên ta được :
\(m^2+4m+3=0\Leftrightarrow m=-3\) hoặc \(m=-1\) (thỏa mãn (*)
Vậy \(m=-3\) hoặc \(m=-1\)
Bài 1:
ĐKXĐ:.............
Phương trình hoành độ giao điểm của \((d)\cap (C)\):
\(2(x-m)-\frac{2x-m}{mx+1}=0\Leftrightarrow m(2x^2-2mx-1)=0\)
Nếu \(m=0\Rightarrow (d)\equiv C\) (vô lý) nên $m\neq 0$ . Do đó \(2x^2-2mx-1=0\). $(1)$
Hai điểm $A,B$ có hoành độ chính là nghiệm của phương trình $(1)$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=m\\ x_1x_2=\frac{-1}{2}\end{matrix}\right.\)
\(d(O,AB)=\frac{|-2m|}{\sqrt{5}}\); \(AB=\sqrt{(x_1-x_)^2+(y_1-y_2)^2}=\sqrt{5(m^2+2)}\)
\(\Rightarrow S_{OAB}=\frac{d(O,AB).AB}{2}=|m|\sqrt{m^2+2}\)
Mặt khác, dễ dàng tính được \(M(m,0),N(0,-2m)\) nên \(S_{OMN}=\frac{OM.ON}{2}=\frac{|m||-2m|}{2}=m^2\)
Ta có \(S_{OAB}=3S_{OMN}\Leftrightarrow |m|\sqrt{m^2+2}=3m^2\)
\(\Rightarrow m=\pm \frac{1}{2}(m\neq 0)\)
Bài 2:
Ta có \(A(1,0,1)\in (d_1);B(3,5,4)\in (d_2); \overrightarrow{u_{d_1}}=(-1,1,1);\overrightarrow{u_{d_2}}=(4,-2,1)\)
Dễ thấy \([\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]\overrightarrow{AB}\neq 0\) nên suy ra $(d_1)$ và $(d_2)$ chéo nhau
Gọi \(\overrightarrow{n_P}\) là vector pháp tuyến của mặt phẳng $(P)$
Khi đó \(\overrightarrow{n_P}=[\overrightarrow{u_{d_1}},\overrightarrow{u_{d_2}}]=(3,5,-2)\)
Vì $(P)$ đi qua $(d_1)$ nên $(P)$ đi qua $A$. Do đó PTMP là:
\(3(x-1)+5y-2(z-1)=0\Leftrightarrow 3x+5y-2z-1=0\)
\(\frac{2x-1}{-x-1}=-2x+m\Leftrightarrow\begin{cases}2x^2-\left(m+4\right)x+1=0\left(1\right)\\x\ne1\end{cases}\)
Đường thẳng y=-2x+m cắt (C) tại 2 điểm phân biệt \(\Leftrightarrow\) phương trình (1) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\begin{cases}\left(m+4\right)^2-8\left(m+1\right)>0\\-1\ne0\end{cases}\) \(\Leftrightarrow m^2+8>0\) với mọi m
Vậy với mọi m, đường thẳng y=x+m luôn cắt đồ thị C tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1\ne x_2\)
Theo Viet : \(x_1+x_2=\frac{4+m}{2},x_1.x_2=\frac{m+1}{2}\)
\(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\Leftrightarrow\frac{m+1}{2}-4\left(\frac{m+4}{2}\right)=\frac{7}{2}\Leftrightarrow m=-\frac{22}{3}\)
Vậy \(m=-\frac{22}{3}\) thì đường thẳng \(y=-2x+m\) cắt đồ thì (C) tại 2 điểm phân biệt có hoành độ \(x_1,x_2\) và \(x_1x_2-4\left(x_1+x_2\right)=\frac{7}{2}\)
1.
Để ĐTHS có 2 tiệm cận thì \(m\ne-3\)
Khi đó:
\(\lim\limits_{x\rightarrow\infty}\frac{mx-3}{x+1}=m\Rightarrow y=m\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow-1}\frac{mx-3}{x+1}=\infty\Rightarrow x=-1\) là tiệm cận đứng
Giao điểm 2 tiệm cận có tọa độ \(A\left(-1;m\right)\)
Để A thuộc \(y=x+3\Leftrightarrow m=-1+3\Rightarrow m=2\)
2.
\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x-2}}{x^2-4}=0\Rightarrow y=0\) là 1 TCN
\(\lim\limits_{x\rightarrow2}\frac{\sqrt{x-2}}{x^2-4}=\infty\Rightarrow x=2\) là 1 TCĐ
\(x=-2\) ko thuộc TXĐ nên ko phải là tiệm cận
Vậy ĐTHS có 2 tiệm cận
3.
Để ĐTHS có đúng 2 TCĐ \(\Leftrightarrow x^2-mx+5=0\) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}6-m\ne0\\\Delta=m^2-20>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne6\\\left[{}\begin{matrix}m\ge2\sqrt{5}\\m\le-2\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow m=\left\{5;-5\right\}\)
Đề bài sai hoặc đáp án sai
Phương trình hoành độ giao điểm \(3x^2+2mx+3m-4=0\left(1\right)\) với x. Đường thẳng d cắt đồ thị (C) tại hai điểm phân biệt khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác -1
\(\Leftrightarrow\begin{cases}9m^2-36m+48>0\\0.m-1\ne0\end{cases}\) (đúng với mọi m)
Gọi \(x_1;x_2\) là các nghiệm của phương trình (1), ta có : \(\begin{cases}x_1+x_2=-m\\x_1x_2=\frac{3m-4}{3}\end{cases}\) (*)
Giả sử \(A\left(x_1;x_1+m\right);B\left(x_2;x_2+m\right)\)
Khi đó ta có \(OA=\sqrt{x^2_1+\left(x_1+m\right)^2};OA=\sqrt{x^2_2+\left(x_2+m\right)^2}\)
Kết hợp (*) ta được \(OA=OB=\sqrt{x_1^2+x_2^2}\)
Suy ra tam giác OAB cân tại O
Ta có \(AB=\sqrt{2\left(x_1-x_2\right)^2}\). Tam giác OAB đều \(\Leftrightarrow OA^2=AB^2\Leftrightarrow x_1^2+x_2^2=2\left(x_1-x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=0\)
\(\Leftrightarrow m^2-6m+8=0\Leftrightarrow m=2\) hoặc m=4
Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)
Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)
\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)
\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)
Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)
\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)
\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)
\(\Leftrightarrow m=\frac{-47}{16}\)
Vậy \(m=\frac{-47}{16}\)
Pt hoành độ giao điểm:
\(\frac{2x+1}{x+1}=x+m-1\Leftrightarrow x^2+\left(m-2\right)x+m-2=0\)
\(\Delta=\left(m-2\right)^2-4\left(m-2\right)>0\Rightarrow\left[{}\begin{matrix}m< 2\\m>6\end{matrix}\right.\)
\(AB=2\sqrt{3}\Leftrightarrow AB^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2+\left(x_A+m-1-x_B-m+1\right)^2=12\)
\(\Leftrightarrow\left(x_A-x_B\right)^2=6\)
\(\Leftrightarrow\left(x_A+x_B\right)^2-4x_Ax_B=6\)
\(\Leftrightarrow\left(m-2\right)^2-4\left(m-2\right)-6=0\)
\(\Rightarrow\left[{}\begin{matrix}m-2=2+\sqrt{10}\\m-2=2-\sqrt{10}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4+\sqrt{10}\\m=4-\sqrt{10}\end{matrix}\right.\)